

of meterological research requares that instrumentation operate over lengthy periods undez space-flight conditions.

On 30 January 1964 the Soviet Union successfally launched a space system consisting of two scientific stations - Electron and Electron 2 - - injected into essentially different orbits, using a single powerful carrier rocket. The advent of this system opened up new possibilities for the study of the nearEasth space envizomment, of special significance to the growth of astrophysics. Electrons 1 and 2 are being used to conduct a wide variety of measurements necessary for a deeper understanding of the physical processes occurring in various regions of the near-Earth space envimonment.

One of the fundamental problems of spatails Electrons 1 and 2 is the study of the inner and outer radiation belts of the Earth. Extremely large streams: of charged particles in the radiation belts bombard every object which enters these belts, The energies, of these particles are 80 great that they can penetrate space ships.

Exposure to this radiationis not only dangerous to the health of cosmonauts making lengthy flights in the radiation belfs but also caures changes in the characteristics of various materials usedin space objects. It has been estab lished that sllicon solar batteries used on satellites and space rockets; are less able, after exposure to particles of these radiation belts, to generate electrical energy. When exposed to very strong radiation, solar batteries can be put out of order, as happened to several American satellites after a high-altitude nuclear explosion by the USA on 9 July 1962 sharply raised the intensity of emanations in the radiation belts.

It is also known that certain transparent materials lose the ur transparency when exposed to radiation - they become clouded, which is especially undesirable for optical systems. Many organic materials applied in thin films to the surfaces of various objects - - for example, for the clarification of optical lenses --are destroyed by exposure to radiation.

The study of the behavior of various materials in space is the field of a newly born field of science -- space material bechnology:

Before the reliability of some material or other in space flight can be determined, the radiation dosage which a given sample of it will receive must belkown. In order to forecast the radiation dosage, scientists must know not only the condition of the radiation belts today but they must know how to forecast their condition tomorrow. Foz this it is necessary to kaow the laws governing the radiation belts, to understand their origin and how they are sustained.

A satisfactoxy explanation has been given of the nature of the internal radiation belt discovered by American scientists with the satellite Exploxer. I. When cosmic radiation destroys nuclei of atoms of the Earth stmospheres neutrons fly offin all directions and some of them leave the atmosphere, The lifetime of neutrons is more than 12 minutes. When a neutron disintegrates, charged particles--aprotonandan electron=--are produced. If a neutron disintegrateg
close to the Eaxth, then the proton and electron are seized by the Earth's magnetic field and begin to move in spiral trajectories, traveling from the northern hemisphere to the Southern and back again along magnetic lines of y force. These particles complete hundreds of millions of trips from one hemisphere to the other before their death. Each such trip is shortened by some seconds. Thus it is that the Earth's magnetic field is a trap for charged particles. Many particles can accumulate in this trap; since at highalitudes; the deasity of matter is extremely small and paxticles moving about there lose their energy very slowly, This hypothesis explains well the experimental data about the composition and energy spectrum of the particles in the inner radia= tion belt. By comparing theory withexperiment it is possible to derive information about the density of the atmosphere at altifudes of more than 1, 000 kilometers.
A some what different picture is observed in the outer radiation belt discovered by Soviet scientists with the Hight of Sputnik 3. It can be shown that the mechanism of the inner belt does not explain the existence of the outertert belt. The outer radiation belt is still a riddle. Apparently, close to the Earth; at distances of thousands and tens of thousands of kilometers, some peculiar "cosmic accelerator" is at work. On the basis of data obtained by satellites we know how pafticles are in principle dispersed in this "accelerator." However, we do not know how this "accelerator" was "built. "

When the Earth passes through a stream of pazticles isswing from the Sun, magnetic storms and polar autrora are observed. At the same time the strongest changes in the outer radiation belt are produced. This means that the "near-Earth spaceaccelerator" is at work. ${ }^{3}$

This is why, to solve the riddle of near-Earth space, various physical phenomena must be studied simultaneously. This requires the building of space systems consisting of a series of satellites which take measurements in various regions of the radiation belts at the same time. The launch of Electrons 1 and 2 is the first step in this direction.
2. Clarification of the nature of the "near-Earth cosmicaccelerator' will aid in solving scientific problems of the greatest importance. It is already known that "cosmic accelerators' of incomparably greater magnitude exist: One is at work during so-called solar flares, which are thousands of times stronger than the "near-Earth accelerator," This solar accelerator generates particles With energies of up to 10 million electron volts. Situated in the depth of our Galaxy is z^{n} accelerator a million times as powerful, creating particles with energies of up to a million billion electron volts. Finally beyond the limits of our Galaxy lie "accelerators" of still greater energies.

In order to understand the series of absorbing problems involved in creating the particles of high energies which make up cosmic rays neaxs: Earth space which is more accessible to us must first be studied.
T. The Cx bits of Satelifites Electron I and Electron Z. The choice of orbits of the space stations Electrons 1 and 2 was based on the need for studying simultaneously the upper layers of the atmosphere, the radiation belts of the Earth; and near-Earth space.

A number of other factors also-were considered-- conditions for radio communications during transmissions from the satellites to gromind stations, the orbital life expectancy of the stations; and the illumination of the stations bythe Sun.

After considering a number of possible parameters for the Electron space systems, two orbits of great eccentzicity were chosen. Such orbits enable scifentific study at all the interesting allitude bands -- from the upper layers of the atmosphere out into sparce and beyond the limits of the radiation belts.

The first orbit Hies in the most interesting regions of the inner radiation belt, partially intersecting, the outer belt and lintruding into the region of irregulaxaties in the magnetic field, in which the unstable streams of particles which cause polar auroras are formed. The second orbit partiallypasses into the inner belt and the more interesting fegionis of the outer belt; entering the Iegion beyond where thete are nonstationary streams of electrons of low energy. This is known as the outermost belt of charged particles.

The apogee of the fret orbit was to be 7, 000 kilometers, which closely corresponds to the outer limit of the inner radiation belt, and the apogee for the second orbit was to lie within the limits $65,000-70,000$ kilometers. The perigee of both orbits was to be in the $400-460$ kilometer region.

It is essential that the focal axes of the orbits of the space stations (that is, the lines uniting perigees with apogees) extend in different directions.
Forthe lower orbit, this axis was favorably ortented with respect to the inner radiation belc.

The focal axis of the plane of the higher orbit was oriented so as to get the most varied altitudes at uniform geographic latitudes in thight during ascending and descending turns of the orbit, which is important for scientific measurements needed in studying the outer radiation belt: The inclination to the Equator of both orbits was about 61 degrees. The magnitude of inclination strongly influences changes in orbital parameters caused by attraction of the Moon and Sun and by the flattening of the Earth. In the selected inclina4ion, the perigees in due course will shift to the north and, what is especially important, the orbit of the station Electron. will the the course of a yearpass through all thicknesses of the inner radiation belt.

A diagram of the orbits of the Electzon space system is shown in lllustration No. I (page 31). Locating the perigees of the orbits in the northern hemisplere provides the most favorable conditions for conducting com munications sessions between the space stations and ground receiving stations:

At the same time, the volume of information is at a maximum near perigee. Since measurements connected with study of the upper atmosphere are made here along with study of the radiation belts.

Itis known that Earth satellites moving in low orbits have a limited life expectancy, because of the braking effect of upper layers of the atmosphere. As the altitude of the oxbit increasest the life expectancy of the satellite also increases, since the braking effect of the atmosphere is diminished. At the Sperigees of the Electron satellites dragis negligible. However, when apogee is on the order of tens of thousands of kilometers, new factors begin to influence noticeably the movements of the satellite $-=$ the attraction of the Sunfand Moon. Computations show that under an unfavorable combination of these forces, the orbital period of a vehicle having an apogee of 65,000 70,000 kilometers can be several days.

In this connection, a detailed study was made of the motion of satellites having orbits of bigh apogee and definite moments of launch, and Electron 2 should stay for a long time in the highly elongated orbit selected for ite:

The most expedient way to create a space system having the required highaltitude orbits is the simultaneous injection of two space stations by one carriex rocket.

Possession by the Soviet Union of powerful space rockets permitted the solution of the problem in just this fashion. However, the practicality of injecting two satellites into essentially díferent orbits by means of a single carmier rocket poses significant technical difficulties. To inject the two Electron stations into the programed orbits; the first one had to be separated during the active portion of the fight, while the last stage of the rocket was still working. Electron 1 had to be separiated in such a way that none of the resulting forces would influence the guidance system of the last stage and the precision of injection of Electron 2. When Electron l separated it also had to fall outside the zone of influence of the efflux of the engine of the last stage.

Both of these difficulties were oyercome by means of a special reaction systemz which separated Electron 1 from the last stage of the carrier rocket at a strictly programed speed. Separation occurred practically without any interfexing influence on the final speed of the last stage. At the same time, Electron 1 was so constructed that at the moment of separation the station would be most compact and would not have large projecting parts.
3. Construction of the Satellites and their Apparatus. Electrons 1 and 2 are autornatic satellite stations developed for a complex study of near-Earth space.

HLustrations Nos. 2 and 3- (see page 34) \quad show exterior views of both stations.

On the outside of the stations solar batteries, antenna systems, partof the instruments for scientific research, and solar orientation sensors are attached. Venetian blinds for heat regulation are mounted about the
cylindrical portion. Folding antennas and panels of solar batteries on Electron I open after separation of the station from the carrier rocket, on command from a time-programed device. This is done to facilitate separation of the station during the active part of the flight. On Electron 2 the panels of solar batteries are atta ched rigidly.

In consonance with the wide program of studyof near-Eafth space, various scientific devices were mounted on the Electrons to carry out measure ments at many points of their orbits. The results are inscribed on memory devices aboard the stations. Scientific information and data about the work of the on-board systems, are accumulated for one or seyeral orbits; depending on how the memory devices are programed.

During communications sessions, storied data are transmitted along with real-time telemetry of a great number of parameters registered by the sensors, and data about the state of all the station's on-board systems. Operation of on-board devices is controlled by two methods - automatically, and on command from special ground stations.

The attitudes of the Electrons in space are determined by means of solar orientation sensors, the indications of which are registered in the memory devices along with the measurements of the scientific devices.

Control of the Electron systems in flight - - the measurement of orbital parameters, the reception and recording of telemetric and scientific informa tion issuance of commands to switch on or off on-board apparatus is accom plished by a command-surveillance complex on the ground.

Communications sessions have confirmed that the Electron space systema: is reliably controlled by command from the Farth.

Now for the fundamental oroblems which must be solyed by the flights. of Electrons 1 and 2. As was saxd above, the basic task of the Electron space system is study of the inner and outer radiation belts of the Earth and related physical phenomena. For these purposes identical apparatus for recording electrons and protons of various energies were installed on both vehicles. These measurements aze to determine the composition of emanations in the radiation belts simultaneously in two points of near-Earth space.

Electron 1 completes its flight around the Earth at a comparatively low altitude (less than 7,000 kilometers). It is used to study the inner radiation belt of the Earth and the near-Earth "spurs" of the outer radiation belt. Electron 2 at the same time cuts through the outer radiation belt and goes beyond it into interplanetary space, where there can be no payticles of the xadiation belts and whexe the basic form of emanation is cosmic radiation.

The use of identical apparatus on both satellites enables the drawing of a. map of the spatial distribution of radiation belts and a link up of these measurements carried out by the different satellites at various distances
from the Earth. Some of the apparatus is installed inside the hermetic container. These instruments register particles of fairly high enexgy electrons With energies of more than 2 miliion electron volts, protons with energies of more than 30 milion electron volts, and photons with energies of more than 50 thousand electron volts.

Particles oflesser enefgy cannot penetrate the hermetic container: Instrumente have been installed on the exterior surface to register such paxticles. Padiation detectors are enclosed by the thinnest of sheets of materials. Their thickness is on the order of a few thousandths of a millimeter. Elyetrons with erergies of more than 30 kiloelectron volts and protons with enexgies of more chan a million electron volts penetrate these detectors

For registering particles of still lower energies, 2 so-called spherical analyzer is used on Electron 2. There is no obstruction to the entrance of particles to this analyzer. Particles deflected in the electrostatic field are moved in circles: In flight an electrical tension applied to the spherical analyzer is automatically switched on. It detects protons and electrons of various energies; beginning with 100 electron volfs:

Particles of low energies are measured allso by a charged-panticle trap, similar to that which Soviet space rockets used to discover the ionized "geocorona" of the Earth and the outermost belt of charged particles which Iies beyond the outex radiation belt and consists of electrons of comparatively low energies. Numerous measurements in the ${ }^{\prime}$ geocoronay and in the outex $=$ most belt by detectors of low-energy particles will increase significantly the volume of information about these regions of near-Earth space.

Aboard Electron 1 is a radio beacon which transmits coherent radiowaves. Observation of these radiowaves by stations deployed on the ground make it possible to trace the propagation of radiowaves and to define the concentration of electrons at high alititudes.

On Election 1, Iow-energy particles are registered by special counters in combination with an accelerator tube. To protect the cathode of the photomultiplier from light, the crystal counter must be covered by some kind of opaque material. No matter how thin the foil that covers the crystal, it still prevents electroas with energies of less than 10 kiloelectron volts from falling on the crystal. In front of the crystal is the accelerator tube which raises the energy af slow electrons to 10 kiloelectronvolts. In this way an instrument on Electron 1 can register electrons of the weakest energy labout 100 electron volts) up to several tens of thousands of electron volts, This data supplements that received by the various other instruments feferred to above which are installed on the satellite. In this way, a wide assortment of instruments permits detailed study of the composition of the radiation, and a determination of the nature and energy spectrum of the particles which make up the radiation belts.

The motion of the particles of the radiation belts is deternined by the magnetic field of the Earth. Therefore, information about the radiation belts. Tsupplements data about the magnetic fields. Also, the motion of particles in: the radiation belis leads to a rise in electuical current which in its turn czeates anadded magnetic field. For recozding magnetic fields far removed from the Eazth, two magnetometers were installed on Electron 2 to measure the magnitude and direction of the tension of the magnetic field. One magnetometer is less sensitive, but it can measure adequately the magnetic field of the Earth. The other is to register weak magnetic fields Iound in the outer: radiation belt and even at great distances beyond its limits.

The concentration of chax ged particles of vaxious energies in the radia tion belts and the magnitude of the magnetic fields created by them are intimately interrelated. Simultaneous measurement of various particles and of magnetic fields gives Very important information about the Earth's radiation belts.

It is quite obvious that research concerning the composition of the upper atmosphere of the Earth is of great significance. In this article we would like to emphasize the posiaible connection between the radiation belts of the Earth and the composition of the upper atmosphere. In journeying from the northern hemisphere to the southern, particles of the radiation belte sometimes end their lives below these belts. Influenced by: a number of factars many of which have not been discovered, particles of the radiation belts axe "poured" out of them and bombard the upper layers of the atmosphere. These belts thus affect the Earth's atmosphere. On the other hand, it is possible that in the upper layers of the atmosphere, certain particles, after acceleration and exit from the limits of the atmosphere, become part of the rachation belts. Radio-frequency mass spectrometers have been installed on both Dlectrons to determine the chemical composition of the upper layers of the atmosphere.

Apart from the elementary particles (electrons and protons) surrounding the Earth, it is possible that so-called micrometeors - - of extraordinarily small size - - also describe orbits around the Earth. Thus experiments Carited out by previous Soviet and uS satellites established the fact that there are more micrometeorites near the Earth than in interplanetary space. This, apparently, results from the fact that micrometeorites approaching the Earth from intexplanetary space accumulate as they bpend a lengthy time orbiting the Eartho A migrometeorite detector has been installed on Electron to register the number of hits during the jouraey of the satellite vehicle.

Also installed on Electron 1 is an instrument which registers X-zays from the Sun. Intensive X-radiation originates during powerful eruptions on the Sun, the so-calledithares, Recording these X-rays makes it possible to identify solarictivity and to examine the connection of these phenomena with states of the radiation belts.

The creation of automatic laboratories flying far from the Earth also makes it possible to study radiation arriving from the depths of cosmic space. A great part of cosmic rays is born beyond the limits of our solar system. The atmosphere and magnetic fields of the Earth pose substantial obstacles in the paths of these rays toward our planet. Electron 2 recedes far from the Earth, beyond the limits of its magnetic field, Therefore, devices for: registering cosmicrays were installed on this satellite. Several of these instruments measure not only gereral intensity of cosmic rays but also determine their chemical composition, that is, identify the nuclei of atoms. encountered.and the quantities in which they are found in cosmic radiation.

Even in deep antiquity people observed celestial bodies extremely remote from us. This was possible thanks to the fact that the eyes of man are able to see stars situated far from us. The potential of modern astronomers rose powerfully when it became possible to observe invisible as well as visible rays arriving from the cosmos - - radiowaves. Thus was born a new science radioastronomy.

As is known, the Earth is surrounded by an ionosphere which reflects short, medium, and long radiowaves. Thanks to this characteristic of the ionosphere, it is easy to communicate between radio btations on various : continents of the Earth. But owing to this same cause, those radiowaves which are long --more than $100-150$ meters -- cannot reach us through the ionosphere from the cosmos. When theylfeach the ionosphere they are reflected back into space. Yet theseradiowaves carry very valuable information about the remote regions of the Universe.

To fecord these radiowaves, it is necessary to go beyond the Earth's ionosphere. Radio receivers which record radiowaves with wavelengths of 200400 meters which arrive from out of the cosmos were installed on the Electrons. Gndoubtedty, these radiowaves will bring extremely valuable scientific information about cosmic space to us:

More than a month has passed since the successful launch of Electrons 1 and 2. At 12:00 o'clock, 12 March 1964, Electron 1 had completed 35 ? orbits of the Earth and 155 radio sessions had been held with it.

Electron 2 had completed more than 44 orbits and 25 communications sessions had been held with it.

During the month of flight of the Electrons, great experimental material relative to the period of the Quiet Sun has been received. Further measurements by Electrons land 2 will aid in the study of variations in tine of the character of near-Earth space under various conditions of solar activity. Member-Correspondent of the USSR Academy of Sciences
S. N. VERNOV

Doctor of Physico-Mathematical Sciences
G. A. SKURIDIN

Kandidat of Physico-Mathematical Sciences

Scientists' Claim to Knowledgeability of

Liquid Hydrogen Fueling of Rockets Discounted

An eminent Soviet physical chernist. N. M. Emanuel, who visited the US late last year, made a remark doring his yisit to the effect that, in the words of a listener, "because he had been instrumental in the liquid hydrogen program in the USSR, he felt he could tell us a few things about liquidehydrogen fueling of rockets. ${ }^{\text {" }}$

This is the first known Soviet claim of the use of liquid hydrogen in rocketry. When used as fuel in upper staging, liquid hydrogen can significantly increase the payload weight placed in orbit by existing boostexs.

Despite Emanuel's statement, it is believed that the USSR is behind the West in the use of liquid hyarogen for this purpose, since its use in flight tests has not been detected yet in telemetry.
(SECRET NO FOREIGN DISSEMINATION Except US, UK, Can, AUS \& NZ)
'Cosmos 27' Announcement Very Likely a
Cover-Up for a Venus Probe Failure
The Soviets announced on 27 March that they had launched another Earth satellite, they named it Cosmos 27. The Sovicts claimed that the vericle was successfully orbited and that its telemetry and a $19.735-\mathrm{mc} / \mathrm{s}$ beacon were working normally.

The Soviet anouncement is misleading and is probably intended to cover up for a falled attempt to launch a probe toward the planet Venus:

50X1 and 3, E.O. 13526

This launch is assessed as a probable Venus probe attempt, since the time and date of launch were close to optimum for a minimum-energy launch to Venus.

Moreover, the orbit of Cosmos 27 was relatively low and very circular, that is, it had the characteristics of a pazling orbit. A. 11 Soviet interplanetary probes launched to date have, so far as fis knowh, used the parking-orbat technique. Orbital parameters as announced by TASS and as developed by SPADATS are compared below:

THSS

64. 8 degrees
65. 7 minutes

237 kilometers
192 lailometers

SPADFTS
64.75 degrees 88. 28 minutes 221, 5 kilometers 159. 1 kilometers:

Inclination to the Equator
Orbital Pexiod
Apogee
Perigee

SECRET

technical intelligence - NOTES

items of interest on teelinical developments cround the world

Soviets Lead in Photoelectronic I mage-for ming
Devices Particularly in Near-Initrared Region
The Soviets appear to be well ahead of the West in the field of photoelectronic image-forming devices; Their leadership is attributable in great part to their development of materials which are photosensitive in the infrared (IR) region of the spectrum and development of techniques for producing imageforming devices.

The more common thermal - $1 R$-- imaging devices are quite slow; usually taking minutes to form an image. But photoelectric devices can respond in a small fraction of a second, hence they can form continuous images of rapidiy moving objects. Thus they have a ligh potential for use in military detection systems, both active and passive. The application most highty emphasized at present by the Soviets is night operation of ground forces.
This includes locating enemy armor, fire control, and operation of mobile equipment. (They might also find application in passive surveillance and in reconnaissance - - on the ground, from the air, and even from Earth satellites.)

Soviet research and development have involved several potential IRimaging devices. The most advanced one is the $I R$ vidicon, a photoconductive TV-type tube. Others include image intensifiers (such as the image orthicon, which presently is sensitive only in the wezy-near $\mathbb{I R}$ region) and solid-state image converters, including those with ferro-electric, or so-called electret, layers, Soviet work in extending the sensitivity of electrophotog. raphy into the near-IR appears to be well advanced over. Western developments and could provide still another photoelectric near-IR imaging system.
(GONFIDENTIAT NO FOREIGN DISSEMINATION Except US, UK, Can, AUS (8. NZ)

