

Portion identified as non-responsive to the appeal

Recent Lull in Missile-Range Activity Not Without Precedent

US radar detected the following Soviet missile launches between 30 October and 15 December 1964 :

Time \& Date	Type	$\frac{\text { Launch Site }}{}$	Range
$1326 Z, 30$ Nov	Zond 2*	Tyuratam	Interplanetary
$2301 Z, 09$ Dec	Cosmos 514	Kapustin Yar	Orbital
$0020 Z, 15$ Dec	SS-9. ICBM	Tyuratam	3400 n. m.
$1319 \mathrm{Z}, 15$ Dec	SS=4 MRBM	Kapustin. Yar	$1050 \mathrm{n} . \mathrm{m}$.

[^0]The lull in missile test launches during this period is not unprecedented,
neither is it seasonal. Weather could be-a contributing factor; as could the need for zeserving one orkmore of the ranges for planned spacesshots.
2 The lul may nowbe over, with ICBM test firings to the pacifie possibly in the offing - I wo mis sile-range instmumentation ships have been dead in the Water since 12 December, at the impact area 7,000 n. . . from the frangehead, and a third could reach the area by 17 December . (Also see Space section of this WIR.

This is one of two areas closed to shapping by a Soviet announcement this summer, but the closure of this particular area was to be effective only through l November, (The other anea, $6500 \mathrm{n} . \mathrm{m}$, from the rangehead, still elosed to shipping by this summer ${ }^{4}$ S Soviet announcernent.) The Soviets eould, however, reclose the $7,000-\mathrm{n}$. m. anea. They have never fired to one of the Pacific Ampact areas wh thout first announcing its closure to shipping. They have, however, launched TCBMs to such areas within 24 hours of the closure announcement.

Subsequent to the closure announcements of liast summer, the Soviets succes sfally fired 3 SS-9. ICBMs to the $7,000-\mathrm{n}$. m. area and I SS- 10 ICBM to the $6500-\mathrm{n} . \mathrm{m}$. area.
(Diyarbakir \& Shemya RADINI; DIA; NORAD)
(SEERUT NO FOREIGN DISSEMINATION -- Releasable to US, UK \& Canada)

Portion identified as non-responsive to the appeal

Soviet Photorecee Satellites Probably

Getting Good Coverage of Free World Targets

T The Soviets are probably obtaining good qually photographic coverage of sensitive Firee World targets with their photoreconnais sance satellites (most I yaratam-launched Cosmoses), according to an FID assessment of an Soviet capabilitiest in photography:

Soviet capabilities to operate an automated camera aboazd a space Vehicle and to process film were first demonstrated by photographs of the far side of the Moon taken by Iunik 3, which was lanached 4 October 195 ?.

Soviet aerial cameras appear to be of high quality, incorporating essenthally all modern features, including automatic-exposure control, panotamic vieys, high-quality extralong-focall-length lenses, uniform-tension film drives, automatic image -motion compensation, computation clircuits, and inflight processing

A 3-year-old report claims that the Soviets haye films with resolutions well above 100 line s/millmeter, aithough they have lower sensitivity than standard aerial film. It is assumed that some progress has since been made in devising a higher speed film with high resolution, in view of the considerable film reseazch being accomplished. Western tests on Soriet black-and-white and color tims showed them to be inferiof to comparable US types in umiformity of density and in color balance, respectively.

Also contributing to the quality of the USSR's Photoreconnaissance satel. lite coverage is the Soviets: ability to launch their velicles on schedule and to inject them into closely controlled orbital parameters.
(FTD)
GSEERER NO FOREIGN DISSEMINATION EXCEPT NAIO, AUS \& NZ)
Cosmos 51 Probably
A Research Vehicle
Cosmos 51 which the Soviets launched from Kapustin Yar (KY) SX Ebout 23012, 9 December, is probably a scientific research velicle, as the Soviets clam. Its orbital parameteris, according to SRADATS:

4n geczet

preparing to monitor forthcoming ICBM firings to a Pacific Ocean impact area 7,000 n.m. from the Tyuratam rangehead (see pages 8 and 91) could also probably monitor any Polyot launch that might take place. Both Polyots
(No. 1 was daunched 1 November 1963 , No. 2 was launched 12 Apmil1 1964) were injected into orbital inclinations of 59 degrees; the center of the 7,000 n. m. impact area is close to the Eay th trace of the Polyot's orbits.

Soviet announcements claimed that the Polyots were maneuverable vehicles and, by their wording, lent the impression that the Polyots were about as free in flightras a fighter aircraft. SPADATS data indicates that Polyot ipprobably did not maneuver at all after initial detection by Shemya radar; any maneuvers that were exceuted must have occurred within the 6 -minute period between 3di-stage cutoff and detection ly Shemya. There is evidence that polyot 2 may have made 2 small changes in orbital inclination, one from 59 degrees to 60 degrees and the other from 60 to 58 degrees.

The development of manelverability of space venicles is an important step Loward the developnent of vehicles which can rendezvous -- and this, in turn, is essential to advanced space programs of the future.

(DIA, SPADATS; NORAD)

(SLCRET NO FOREIGNODISSEMMNATION--Releasable to US, UK \& Canada)

Soviets Claim Lunik 4
 Now in Heliocentric Orbit

Allisting of Soviet space launches which was published in the April 1964 issue of the Sovilet Air Force magazine "Aviation and Cosmonatutics" remarked asfollows on Lunile 4, which was launched 2 April 1963 .

> UThe automatic station on 6 April passed within 8500 kiometers of the lumat surface. In 1963 it revolved around the Earth and then, under the iniluence of solar attraction, it left the sphere of influence of the Earth and became an artificial satellite of the Sun.

The Soviet statement that Iunik 4 has gone into heliocentric orbit is probably based upon computations of early observations, not uponactual observation of transfer into helfocentric orbit. The Soviets, it is noted, did not specily the date that the probe transferred into its new orbit:

SPABATS data indicates that Lunik 4, after passing near the Moon, Went into barycentric (Eaxth-Moon) orbit. However. a stable barycentric orbit is exceptional. Ordinarily, a vehicle in barycentric orbit is likely, eventually, to come increasingly under the gravitational influence of either the Eaxth or the Moon, or to leave the gravitational influence of both and take up a heliocentric orbit, In any case, the exact course of events and

[^0]: * Launched by SS-6 ICBM booster \& sustainer, injected into Earth parking orbit by heay y Venik third stage, and injected into transfer trajectory toward Mars by fourth (interplanetary) stage:
 \#1 Launched by 2 -stage vehicle of unknown type

