Preservation

Salvage of Water Damaged Library Materials - part 8

VACUUM AND FREEZE DRYING TECHNOLOGIES

It is important to understand that the processes used by vacuum and freeze-drying companies differ considerably depending on the specific requirements of the material to be dried. The majority of these companies have developed their technologies for food. Few have had experience in drying paper and books and therefore may not know if their normal operating system would be safe, or cost effective for this purpose. Freeze-drying has a number of significant advantages over vacuum drying since water remains in the frozen state during sublimation, a process which removes water from the solid state to the gaseous state. This avoids most of the problems associated with expansion, sticking and wicking of water sensitive and soluble media. Vacuum drying, generally considered to be a process that changes a liquid to a vapor, will result in a much greater risk of expansion, distortion, sticking, and staining.

Although both drying methods have been found to produce satisfactory results in a number of disaster recovery events, comparison between the two following a disaster has not been made. Our preference is for freeze-drying because it is the least aggressive of the two methods. However, there are situations where for instance, archival documents have been affected and where there is a low percentage of intrinsically valuable material, where vacuum drying has provided satisfactory results. The choice between the two should be governed by the nature, value and condition of the damaged material. Rare collections of significant value need to be dried with due regard to the sensitivity of the substrate and media and it is for this reason why we suggested earlier that such materials be segregated form the less rare.

Freeze-drying which is used to dry animal specimens, does so at very low internal chamber temperatures, lower than is used for most food processes. One animal specimen may take several weeks to dry. At this slow rate of drying the costs are high. Most paper and book material can withstand higher temperatures than those used to dry delicate animal specimens and there is a need for thermal energy to make the process efficient and cost effective.

If a vacuum or freeze-drying chamber is designed to operate with internal chamber heat sources, these must not touch the material to be dried, to avoid over heating and scorching. The internal temperature of a chamber should be no greater than 100 degrees Fahrenheit (37.8 degrees Celsius). For sensitive materials, including early book material where there is a mix of paper, vellum leather and wood etc., below ambient temperatures or those used to dry animal specimens should be used, to dry the material slowly and under carefully monitored conditions. (Note: In specifying an upper limit of 100 degrees Fahrenheit we consider this to be a safe temperature. There is insufficient data at this time to evaluate the effects of higher temperatures).

It is important to realize that the success of any large drying system depends on the ability of the system to stop the develop- ment of mold during and after the drying process. Be aware of the risks in accepting material returned from commercial drying processes unless there is a guarantee that none will be returned damp or wet. If mold develops after return, it may not be possible to detect it, if the material remains boxed. If care was taken to segregate mold-contaminated from non-contaminated items during recovery, boxing and freezing, this will help determine if the drying was carried out properly. If mold develops in the non-contaminated material, the chances are that either the drying was not done correctly or that drying was not complete.

Mold-infected material, if dried completely under freeze-drying conditions, can be safely controlled for a short period of time, so that the spores remain quite dormant if stored after drying in an air conditioned environment maintained at 50 to 55 degrees Fahrenheit and a relative humidity of 35 percent or lower. However they must not be returned to the library or archive shelves until the mold contamination has been treated. For this reason we recommend that at the end of the drying cycle and while still in the drying chamber all mold-contaminated material be sterilized. If extreme care was not taken to separate contaminated from non-contaminated materials before the drying operation, we recommend that each drying load be sterilized.

REHABILITATION AFTER DRYING

If maximum benefits are to be gained from stabilization by freezing, every effort should be made, first, to identify and assess the value, condition, and total numbers and types of materials damaged, and second, to draw up comprehensive lists of those materials which can be replaced and those which should be reclaimed and restored. Replacement is nearly always cheaper than restoration. Volumes to be reclaimed will need to be evaluated in terms of the amount of restoration needed and probable costs. The best time to make such judgments, if a disaster preparedness plan does not exist, is after the volumes have been dried and before they are returned to the library or archive shelves.

The following represent basic steps that need to be taken after drying in order to begin returning the material to normal housing environments.

Unless a drying company can guarantee in writing that no material will be returned boxed if it has a water content exceeding 7% by weight, there is a high possibility that some boxes will contain damp material that will add to the risks of post drying mold development, and which, if allowed to develop, will quickly spread to other uncontaminated material, if left unchecked and therefore undetected.

It is important when preparing specification for a drying contract that acceptable water content is not specified as an average of a books total water content. For instance the text block of a book may be measured at far less than 7% but the water content of the book cover boards may contain higher 7% of water. Therefore it is necessary to specify that the waters content of all the books composite materials be less than 7%.

Do not store the material in un-opened boxes immediately upon return from the drying facilities, even if this seems to be the most convenient action to take.

All books and paper file records should be unboxed and placed on open shelving in a well ventilated, air-conditioned rehabilitation area, well separated from the main collections. The rehabilitation area makes it easier to assess the condition of the dried materials, as well as to identify those that can be replaced and those that must be cleaned and restored.

A carefully organized, random inspection of mold- infected materials should be conducted daily by personnel trained to carry out this important task.

Whether materials have or have not been sterilized during the drying process, it is necessary to monitor their behavior as a check against the effectiveness of drying and sterilization and to identify any potential for mold growth and to take the appropriate action, before the return of these materials to the main collections.

We are concerned here with monitoring the dried volumes while they are in the rehabilitation area, and after their return to the main stacks. This monitoring should be continued at regular intervals for at least a year after they are returned to the main library shelving.

In preparing the rehabilitation area, provide about twice the number of shelves as would be needed for normal book requirements. This will compensate for the effects of distorted and expanded books and provide sufficient air space to allow the material to regain their moisture equilibrium content which, depending upon circumstances, may take a week or two.

Theoretically, equilibrium moisture regain can be accomplished at the end of a drying run while the material is contained in the drying chamber. The chamber can be back filled with moisture to achieve the desired result. However this is only possible and safe if the drying method has been guaranteed to dry the material completely. If there remains some partially damp material at the end of a drying run, back filling the chamber with moisture would make such material more vulnerable to mold growth.

The rehabilitation area should be maintained at a relative humidity of 30 to 40 percent and a temperature of less than 65 Fahrenheit. Both humidity and temperature controls must be adjustable.

It is desirable to maintain the collection in the rehabilitation area for a period of at least six months. At this time, temperature and humidity in the rehabilitation area can be gradually changed to duplicate conditions in the stack areas to which they will be returned. At the end of this time, if no mold growth has occurred, the volumes can be returned to the main stacks and monitored as indicated above. It is highly desirable but usually not practical to leave volumes in the rehabilitation area for an added six months in an environment that duplicates normal stack conditions, as a check against post drying mold growth.

No materials should be returned to the main library shelves without very careful inspection, and preferably not before all necessary cleaning and restoration has been completed.

Continue
Disaster Preparedness Table of Contents

Top of Page

PDF files require the free Adobe Reader.
More information on Adobe Acrobat PDF files is available on our Accessibility page.

Preservation >

The U.S. National Archives and Records Administration
1-86-NARA-NARA or 1-866-272-6272

.