

NASA Report to NARA on OAIS Based Federated

Registry/Repository Research: May 2005-January 2006

Don Sawyer Lou Reich John Garrett Sergey Nikhinson

Donald.Sawyer@ LReich@ John.Garrett@ SNikhins@

gsfc.nasa.gov csc.com gsfc.nasa.gov csc.com

March, 2006

Table of Contents

1 Introduction ... 3

2 Current View of the Draft Standards .. 4

2.1 XFDU Draft Standard and Reference Implementation (May, 2005) 4

2.1.1 The XFDU Toolkit Library ... 7

2.2 Producer-Archive Interface Specification (PAIS) Draft Standard 7

3 Major XFDU Activities during Research Period .. 9

3.1 Specializations of XFDU XML Schema .. 10

3.1.1 XML Schema Specialization Best Practices ... 11

3.1.2 Developing XML Schema Specializations for the SIP ... 13

3.1.3 Observations and Conclusions .. 14

3.2 XFDU Toolkit Library Testing .. 14

3.2.1 Testing Performance of Underlying Compression and Packaging Utilities.............. 14

3.2.2 Performance Testing of XFDU Toolkit Library Interfaces 16

3.2.3 Usability of XFDU Information Model and Toolkit Performance with Current

Archived Data Products... 18

3.2.4 Implementing Advanced XFDU Functionality in the XFDU Toolkit Library.......... 24

4 Issues and Decisions Regarding PAIS Standardization .. 26

4.1 Generality and Understandability of the Concepts .. 27

4.2 Organization of the Document ... 27

4.3 Need to Support Differing Data Producer Views as to their Materials for Submission... 27

5 Summary Status, Findings, and Known Issues ... 28

5.1 Status of Specification Efforts ... 28

5.1.1 XFDU Status ... 28

5.1.2 PAIS Status ... 28

5.2 Findings and Issues Summary.. 29

5.2.1 XFDU Findings ... 29

5.2.2 XFDU Issues ... 29

5.2.3 PAIS Findings ... 29

5.2.4 PAIS Issues ... 30

2

1 Introduction

The National Aeronautics and Space Administration’s Goddard Space Flight Center through its

Space Sciences and Exploration Directorate’s National Space Science Data Center is performing

research into advanced information encapsulation, information models and procedures, and

highly scalable ingest mechanisms based on the Open Archival Information System Reference

Model (ISO 14721:2003) (1) and the emerging XML Formatted Data Unit (XDFU) technologies

for contributions supporting NARA’s requirements to provide the American public with access to

federal, presidential, and congressional electronic records collections.

This research is being conducted in coordination with standardization activities under the

Consultative Committee for Space Data Systems (CCSDS), but is not limited to those activities.

It benefits from the efforts of other agencies participating in the standardization work addressing

the XML based packaging of data and the development of formal mechanisms for the submission

of data to archives. It also applies the emerging standards to NASA and NARA specific data and

ingest requirements to determine the utility of the draft standards and to illuminate both technical

and operational issues.

It is widely recognized that techniques for packaging data and supporting metadata into logical or

physical containers provide useful mechanisms for a variety of situations within and external to

archives. Researchers are going beyond the simple creation of tar files to incorporate

standardized types of metadata playing various roles. One of the earliest efforts in this direction

was the development of the ISO standard 12175 (2), known as the Standard Formatted Data Unit

(SFDU), developed under the auspices of the CCSDS. In July, 2000, the World Wide Web

Consortium released the “Report on XML Packaging (3)”. This effort outlined the requirements,

issues and potential solutions to the problem of packaging XML metadata and binary into a single

file. The W3C membership felt that this was an important issue, but it was not a high priority for

typical XML user and did not start a Working Group. They did issue the results of the study and

urged interested parties to create a single standard.

The CCSDS recognized the need to develop a new generation of Information Packaging

standards to meet the new requirements including use of the internet as the primary data transfer

mechanism, leveraging the better understanding of long-term preservation from the OAIS RM,

and incorporating XML as an emerging universal Data Description Language. The Information

Packaging and Registries (IPR) working group was chartered in the fall of 2001 to develop

recommendations in this area.

CCSDS prefers to adopt or adapt an existing standard rather than start from scratch to meet

identified requirements. So after the development of scenarios and requirements, the IPR WG

evaluated existing technologies and alternative solutions prior to any XFDU development. The

efforts studied were METS developed under a Digital Library Federation initiative, Open Office

XML File Format developed by SUN and other members of the Open Office Consortium, the

MPEG-21 efforts in ISO, and the IMS Content Packaging Standard developed by the IMS Global

Learning Consortium. There was significant discussion on adopting the METS standard but the

focus on digital libraries datatypes and the lack of a clear mapping from the METS metadata to

the OAIS RM led to the decision to use the flexible data/metadata linkage from METS but to

implement an independent XFDU mechanism.

3

Leading up to this research support, several versions of the CCSDS Draft Recommendation,

“XML Formatted Data Unit (XFDU) Structure and Construction Rules” and the XFDU Toolkit

Library, a reference implementation consisting of a set of JAVA Libraries and a partial GUI had

been developed. In late 2004 a stable version of the Recommendation was approved for review by

the CCSDS Engineering Standards Board and prototyping and testbed efforts were initiated by

CCSDS agencies.

The CCSDS has also established the Data Archive Ingest (DAI) Working Group. It has produced

a standard, which has also become an ISO standard, called the Producer-Archive Interface

Methodology Abstract Standard (4). Informed by the OAIS reference model, it provides a model

for negotiation between the Producer and the Archive, and it includes many steps leading to a

Submission Agreement and a formal model of the data to be submitted. The current primary task

of the DAI Working Group is to develop an implementable mechanism for the formal model that

describes the organization of data to be delivered to an archive, and it must work with a standard

delivery package structure. This will be referred to as the Submission Information Package (SIP)

Model standard. Its primary focus has been on the metadata needed for the description as it plans

to make use of the XFDU standard for delivery of the data.

In this report we describe progress in the development of the two standards, including rationale

for certain decisions that have been made to date. We also describe recent experience in testing

the XFDU standards in the context of software implementability and for use in packaging existing

data from NASA and from NARA. We finish with summary of findings addressing what has

been learned and noting some known issues.

2 Current View of the Draft Standards

2.1 XFDU Draft Standard and Reference Implementation (May, 2005)

The main purpose of the standard (5) is to define a specification for the packaging of data and

metadata, including software, into a single package (e.g. file or message) to facilitate information

transfer and archiving.

While the primary CCSDS scope of application is the entire space informatics domain from

operational messaging to interfacing and working with science archives in the context of the

OAIS Reference Model, its applicability should be much broader because of the commonality of

issues with other domains and specifically the needs of the NARA for receipt and management of

digital records.

A high level view of the XFDU is shown in Figure 1. It consists of an interchange file, called the

Package Interchange File, that contains an XML structured Manifest Document and possibly

other files. However it also logically includes other external objects (typically files) pointed to

from within the Manifest Document. The Package Interchange File may also be an XML file, or

it may be some type of binary file archive format such as ZIP or JAR.

4

Figure 1. An XFDU consists of an interchange file containing a Manifest Document and possibly other

files, but logically includes other external objects (files) pointed to from the Manifest Document.

The Manifest Document has a few major components whose functions and relationships are

shown in Figure 2.

The Manifest includes a mandatory structure map section, called an Information Package Map

that defines one or more Content Units.

A Content Unit may contain other Content Units, and each Content Unit has a number of other

optional attributes and elements. Its attributes allow reference to associated Metadata Objects by

internal pointers to elements in the Metadata Object section. Although not shown explicitly in

Figure 2, several of these attributes may be used to categorize the referenced Metadata Object

distinguishing among Representation Information, Preservation Description Information (PDI),

and Descriptive Information as defined in the OAIS reference model. Content Unit elements may

include other Content Units, may be internal pointers to elements in the Data Object section or

may be external pointers to other XFDUs. Therefore a Content Unit can be used to associate a

Data Object with one or more Metadata Objects, and multiple Content Units can present a

hierarchical view of these data/metadata associations.

The attributes of a Data Object in the Data Object section are used to provide information such as

mime type, size in bytes, checksum value and type, an internal pointer to associated

Representation Information, and an identifier for information registered with a given registration

authority. The elements describing a Data Object enable the object to be described as a sequence

of one or more byte streams. The location of each byte stream is given either by a pointer (e.g.,

URL), or it may be included as a Base64 octet sequence. Note that each byte stream also has a

set of attributes that can be used to provide mime type, size in bytes, checksum value and type.

Further, each byte stream may have an associated transformation element giving the type of

transformation that has been applied to the byte stream.

5

Figure 2. Manifest Document includes a structure map section that gives a view of one or more Content

Units. Each Content Unit can point to a data object and one or more associated metadata objects. Each

metadata object may be classified in a number of ways.

In the Metadata Object section, the attributes of a Metadata Object, like those of a Content Unit,

can be used to categorize and classify the objects, including the ability to distinguish among

Representation Information, Preservation Description Information (PDI), and Descriptive

Information as shown in Figure 2. The elements describing Metadata Objects are use to either

encapsulate the actual object in base64, or to point to a Data Object in the Data Object section.

This allows a Metadata Object to also be described as Data Object in the Data Objects section.

Since this description includes an attribute that is an internal pointer to Representation

Information, a Metadata Object can be associated with its own Representation Information. Note

that this mechanism allows the construction of OAIS defined ‘Representation Nets’ when the

associated Representation Metadata Objects are also held as Data Objects.

A Behavior Section contains one or more Behavior Objects (behaviorObject) that associate

executable behaviors with content in the XFDU object. A Behavior Object contains an Interface

Definition (interfaceDef) that represents an abstract definition of the set of behaviors represented

by a particular Behavior Object. A Behavior Object also may contain a Mechanism that is a

module of executable code that implements and runs the behaviors defined abstractly by the

interface definition.

6

A Package Header contains administrative metadata for the whole XFDU Package, such as

version, operating system, hardware, author, etc, and it may contain metadata about

transformations and XFDU versions /extensions that must be understood to successfully process

the contents of the XFDU. An example of this metadata is a reference to an implementation of an

algorithm to reverse a transformation that has been applied to some of the data objects within the

containing XFDU

2.1.1 The XFDU Toolkit Library

An XFDU reference implementation API library using JAVA has also been generated. It

conceptually consists of two layers. The first layer is a low level API representing each structure

in the XFDU schema. The second layer is a higher level API that aggregates part of the

functionality from the first layer. This allows easier access to constructing and manipulating an

XFDU package. Both layers can be used either individually or in combination to manipulate a

package, however the higher layer API doesn't provide all the functionality of the lower layer

API. This means that while it can be used, for example, to create and populate a package with

major pieces of information, one still needs to invoke the lower layer's methods to deal with

numerous optional attributes of the XFDU elements. It is expected that coverage of the higher

layer will grow over time to cover more areas of XFDU packaging.

2.2 Producer-Archive Interface Specification (PAIS) Draft Standard

The key objective of the PAIS standard (6) is to provide a method to formally define the digital

information objects, along with their important inter-relationships, that are to be transferred by an

information Producer to an Archive. Another objective is to support the effective transfer of

these objects in the form of Submission Information Packages (SIPs) as modeled in the OAIS

reference model. (Due to this objective, the PAIS Draft Standard is sometimes referred to as the

SIP Standard.) If these objectives are met, use of the standard should facilitate validation by the

archive that all the objects expected have been received and that they conform to the

characteristics expected.

While the primary participants in the development of this standard are members of various space

agencies, it is expected that this standard should have much wider applicability.

A high level view of the process involving use of this standard is given in Figures 3 and 4 as

extracted from the draft document (6). The Producer is assumed to have an understanding of the

type of data objects to be transferred, and by using one or more Descriptor Models as provided by

the Archive, is able to create Descriptor instances corresponding to each type of data object

(typically one or a few files) that is to be transferred. Descriptor instances include attributes

identifying the descriptor type, number of data objects of this type to be transferred (if known),

title for this type of data object, identification of the parent Descriptor instance, and identification

of the SIP model to use in transferring the data object. There may also be various optional

attributes taken from the standard, such as relationships to other Descriptor instances, or other

attributes defined as needed for the Archive Project. Collections of such data objects and even

collections of collections would each have a Descriptor instance defined. This modeling includes

categorizing the Descriptors as relating to either ‘data objects’ (DOs), ‘complementary data

objects’ (CDOs), or ‘collections of DOs or CDOs.’ The DOs are viewed as the primary data of

interest, while the CDOs are viewed as relating to and supporting the DOs. The collections are,

of course, just grouping of these data objects. The set of resulting Descriptor instances will form

7

a hierarchical structure called a Plan of Transfer (POT). This is intended to be iterated between

the Producer and the Archive and should give the Archive the ability, in principle, to do

validation on the incoming data objects to whatever level of specificity has been achieved via the

POT.

Figure 3: The process starts with the development of Descriptor Instances based on the data objects to be

transferred and on the standardized Descriptor models. A Plan of Transfer is created along with models of

how to map the data objects into types of SIPs for transfer. During the transfer phase, the data objects are

instantiated into actual SIPs by the Producer using the SIP model constraints.

The document also currently specifies an abstract view of a SIP model in terms of attributes that

are to be incorporated into a given SIP instance. Each SIP model must identify the Descriptor

instances associated with the data objects to be transferred with this particular type of SIP. It

must also provide a mapping from the identification of the Descriptor instance to the individual

file names associated with that Descriptor instance, however this is not required until the SIP

instance is generated. A given Archive Project may need multiple SIP models if there is a need

to have different sets of Descriptor instances associated with different SIPs. There may also be a

need for constraints on the delivery sequence of SIPs and data objects. The draft standard

recognizes this need with a related set of attributes.

The SIP model instances, combined with the actual data objects for transfer, are then ready to be

packaged into a container. This mapping to an underlyling container mechanism is under

development. There will be a mapping to the XFDU standard within this specification, most

likely in the next version of the document. The result of using the mapping is the creation of a

SIP package, as shown in Figure 3.

It is assumed that the SIP package is transferred to the Archive successfully. As shown in Figure

4, the Archive receives the SIP and begins SIP validation by looking into the SIP, recognizing the

SIP type and associated identifiers of Descriptor instances, and using the Descriptor instance

information for comparison with the data objects found in the corresponding section of the SIP

8

3

Figure 4. Created SIPs are transferred to the archive where they are validated against the Plan of

Transfer and the SIP models previously agreed between Producer and Archive. Acknowledgements and

anomalies are noted.

Any anomalies are noted and result in further interaction with the Producer. Otherwise the SIP is

found acceptable for completion of the Archive ingest process and the production of Archival

Information Packages (AIPs) for preservation.

The current document includes an XML schema for the specification of a generic Descriptor

Model. It will eventually include an XML schema for the specification of a generic SIP Model,

and it will include a mapping to the XFDU standard.

This document also addresses steps in the validation process, anomaly management, and the

management of modification to the POT while the Archive Project is underway. It remains to be

seen if any of this will be included in the final standard as it may be found to be over specified for

most Archives.

Major XFDU Activities during Research Period

During the CCSDS IPR workshop in April, 2005, there were many comments (both editorial and

technical) from NASA and other agencies on the XFDU draft standard. Most of the issues

involved XML Naming Conventions and minor schema clarification and were resolved at the

meeting.

The unresolved technical issues involved the XFDU approach to XML Schema Specialization

and XML Schema Versioning. The analysis during the meeting identified the need to define Best

Practices in these areas and the definition of an XML Schema repository service for XFDU XML

Schema versions and extension prior to the next version of the XFDU Red book.

9

A set of XFDU XML Schema changes was agreed at the April meeting. These changes were

incorporated into the XFDU schema and the XFDU toolkit library as release 1.1. The XFDU

schema was frozen until the results of agency prototypes and interoperability testing were

available.

New XFDU toolkit library releases were to be made based on improved functionality and bug

fixes The most recent version of the XFDU schema and toolkit libraries with upgraded user

guides and documentation can be found at the XFDU Project website

(http://sindbad.gsfc.nasa.gov/xfdu/). It was agreed that the next formal version of the XFDU

Recommendation would be based on the results of testing,

The following sections discuss the major research activities during the period of April, 2005 thru

February,2006:

3.1 Specializations of XFDU XML Schema

One of the major reasons for using XML Schema as the underlying notation for the XFDU is the

requirement that the XFDU must be able to be extended both to enable new versions of the

XFDU Standard to be released over time and to allow third parties (e.g. other standards group,

agencies, projects) to create specializations of the XFDU schema that remain compatible with the

core schema. These specialization types have many common requirements and are often

confused. The definitions of Versioning and Extensibility as used in this document are:

1.	 Versioning is the process for modifying an XML format over subsequent releases: (e.g.

v1.0 -> v1.1 -> v2.0 -> v3.0). Versioning is about evolution, and perhaps extension, of a

language, over time.

2.	 Extensibility is a mechanism that enables new data to show up side by side (or

concurrently) with data for a given format. Extensibility is about evolution across space.

The Extensions are typically created and maintained by third parties who want to extend

the format

During the early phase of XFDU concept definition and schema design a short study of the

alternatives and practical considerations of tool support led us to use XML Schema abstract

elements and substitutionGroups to define “extension points” where evolution of the XFDU

schema was anticipated. A brief concept paper and this evaluation was written in 2002 and

several illustrative examples of this technique are included in the current version of the XFDU

Specification (5).

During this research period there were two third parties who wanted to specialize the XFDU

schema as a basis for their Standard development.

The first specialization activity is called SAFE. SAFE is a standard format for archiving and

conveying data within the European Space Agency (ESA) Earth Observation archiving facilities

and potentially with the cooperating agencies. The SAFE developers were informed of the XFDU

by ESA and became active members of the CCSDS in November, 2004. They had a requirement

to produce an operational system in January, 2006.

The second specialization activity is support for the PAIS Draft Standard. The PAIS SIP work,

discussed in this document, is intended define a concrete implementation of the abstract SIP

defined in the OAIS RM and refined in the PAIMAS (4). The decision to use the XFDU to

10

http://sindbad.gsfc.nasa.gov/xfdu/

develop a concrete implementation of the SIP to aid in the understanding of the PAIS abstract

syntax was reached in the April, 2005 CCSDS IPR/DAI meeting.

Both of these efforts wanted to create extensions of the XFDU schema with the expectation that

there could be future versions of their standards that would be independent from evolution of the

XFDU schema. Both SAFE and PAIS also assumed that users would need to further specialize

the schema to better meet community specific requirements.

The SAFE developers were on a very tight time schedule and would have control over all schema

specializations in the ESA archive domain. In order to accomplish these goals, XML Schema

feature Redefine was used to both specialize the XFDU schema to create a core SAFE schema

and to specialize core SAFE schemas to create archive and project specific schemas. The

Redefine is known in the XML community as the least understood and inconsistently used feature

The developers of SAFE use XML Schema Redefine to both import and specialize the XFDU

XML Schema in a new “SAFE” namespace. Then new XML entities are defined to allow the

SAFE XML processor to validate various metadata objects against these standard vocabularies. In

order to allow various Earth Science archives/project to further specialize the SAFE standard

schemas, SAFE implementers use XML Schema Redefine mechanisms to define Project specific

namespaces and schemas. The following paragraphs, which are adapted from the draft SAFE

specification, discuss the requirements and approach. The specification also contains the SAFE

Schemas and specifically describes the variations from the XFDU.

During the redefinition or restriction, some features of XFDU are discarded or constrained

according to the specific needs of SAFE. SAFE may constrain values of particular attributes,

occurrences of elements, and especially add rules of consistence, mechanisms of connection

between the various components of a SAFE Product (Manifest file, XML schemas, binary

files etc.)

SAFE introduces new types, defining and organizing the product data. These may be

complex types such as platformType gathering all data related to the flying acquisition

system, or simple types such as platformFamilyNameType defining the platform name.

The SAFE implementers proposed that the use of XML Schema Redefine be recommended as the

preferred technique for schema versioning and specialization in the XFDU Recommendation or

the XFDU Best Practices Document. This request was rejected as premature. However, a study of

recent literature and implementations on XML Schema Namespaces, Specialization and Schema

Repository Services Best Practice was approved.

This study is ongoing. The preliminary results of this study are described in the next section.

3.1.1 XML Schema Specialization Best Practices

The initial research into XML Schema Namespaces, Specialization and Schema Repository Best

Practices revealed that:

	 XML Schema Best Practice documents from major United States Agencies, International

Standards Organizations, computer vendors, and CCSDS member agencies were inconsistent

and often conflicted in important areas. These results are documented in the Annex B

11

	 Initial investigations of XML Schema Extensions and Versioning mechanisms also revealed

that the “seminal papers” had good agreement on the problems in this area. They also agreed

on the difficulty of solving these problems without modifications to the XML Schema or the

use of specific higher-level protocol constructs such as those in the W3C web services

protocols.

A brief study of XML Schema Registry/ Repository products (open source, commercial or

government) or publicly available Internet Services revealed no mature products or service

offerings that met the requirements for an XML Schema Repository. All the current XML

Registry/Repository products and Internet Services were focused on Web Service requirements.

The two prominent contenders for the online XML Schema Registries market in the early 2000s,

http://xml.org/xml/registry.jsp from OASIS,and biztalk.org from Microsoft, were no longer

operational. In our initial study in 2005, indications were that the xml.org website had not been

updated since 2003 and the OASIS server update in early 2006 made the pages inaccessible.

Microsoft had closed its BizTalk.org registry of XML schemas on July 19, 2002.
During this study period two external efforts occurred that provided validation of the fact that the

required XML Schema Versioning and Extension mechanisms were not yet mature. These efforts

referenced current activities that could be leveraged to provide a framework that would be

interoperable with emerging commercial and government guidance:

	 The W3C held a public Workshop on XML Schema Practical Experiences to gather input for

the XML Schema 1.1 development. The complete set of input working papers, presentations,

session notes and Chairman’s final report can be found at http:

http://www.w3.org/2005/03/xml-schema-user-cfp.html

 The Federal XML Working Group began the specification of a new version of an XML

Schema Naming and Design Rules and Guidance document which covered the same scope as

the required XFDU XML Schema Best practices study. This study is ongoing and complete

documentation can be found at https://fed-xml-ndr.core.gov/

There still are no complete solutions to these problems. Currently the work on the Universal

Business Language Version 2 has revealed that the basic problem of validating Code Lists

requires the use of features that are not present in XML Schema and they are investigating

Schematron and Namespace-based Validation Dispatching Language (NVDL) as potential

solutions. These languages and RELAX NG are parts of ISO/IEC 19757 Document Schema

Definition Languages (DSDL), a framework for partitioning XML schema validation problems

into several layers and developing focused languages for each layer.

The W3C XML Schema Structure Version 1.1, that should have more features to support

versioning, is significantly behind schedule. After an incomplete draft was issued in February

2005, no new versions have been issued.

Conclusions

The status of XML schema versioning and extensibility mechanisms is clearly a concern in the

development of the XFDU. However, it appears that waiting for the needed features to be

developed in new versions of the W3C XML Schema is a very high risk. Therefore the XFDU

research effort should continue the investigation of alternative methods of XML validation. A

brief description of a very early phase of this research can be found in section 3.2.4.

12

http://xml.org/xml/registry.jsp%20%20from%20OASIS,%20and%20biztalk.org
http://www.w3.org/2005/03/xml-schema-user-cfp.html
https://fed-xml-ndr.core.gov/
http:BizTalk.org

3.1.2 Developing XML Schema Specializations for the SIP

The CCSDS Submission Information Package is described in this report. The SIP Standard

development team made the decision to base a SIP implementation on the XFDU. The desire of

the editors of the SIP specification was to define a set of SIP XML schemas that were formal

extensions of the XFDU XML Schemas that would be valid XFDUs but to add SIP identifiers

and constraints. There have been several iterations of the SIP XML Schema design between

ourselves and the SIP editors which have identified both some strong and some weak areas of

XFDU extensibility and mechanisms, an example of using the XFDU validation API for

Schematron rules, and some potential XFDU XML Schema changes.

The initial changes requested an XML schema with additional elements and attributes in the

contentObject. It had been anticipated that the contentUnit would be an extension point so an

abstract element and appropriate substitution Groups had been defined in the XFDU Schema. We

merely defined a new concrete implementation of the contentUnit in the SIP namespace with the

additional entities

The second change requested was to create global attributes that would appear once and be valid

for all objects in the XFDU. While this seemed similar to the previous task, the fact we did not

have an extension point built into the XFDU schema for the Information Package Map or the

Package Header eliminated the simple solution described above.

We proposed two solutions that could be implemented using the current XFDU Schema

1. Extend the xfdu information package map so the global attributes sipTypeName and

sipTemplate can be attached to the information package map . However, since we did not

anticipate the information package map as a specialization point there was no abstract

class and substitution group available. Therefore, the extension would need to be added

to SIPXFDU as the last top level element.

2. Declare the elements as optional on the sipContentUnit. Then, in the instance, put

ipTypeName and sipTemplate only at the top level sipContentUnit for the package.

Finally, use Schematron to insure that the elements are located once and only once only

in the top level sipContentUnit

The PAIS SIP team rejected these two solutions because:

1.	 The SIP information is located in 2 places. There are 2 package maps that seems like bas

schema design would be confusing. (solution 1)

2.	 The XML schema allows the global information to be repeated. It's up to the Producer to

manage the occurrence of this information or else require the use of Schematron (solution 2)

They suggested including the global information in the packageHeader section, as a new complex

element. In discussion it was noted that we could create an anyXML element with “lax”

validation and have SIP and other third party users specialize the complex element into an

element with “strict” validation. However this would create a number of incompatible third party

specializations.

This and several other potential solutions, including the use of redefine with a standard initial

content unit for SIP, and the definition of an abstract element and substitution groups were

discussed by the working group. The SIP designers did not indicate a preference for any of these

13

solutions and took the matter under advisement.

3.1.3 Observations and Conclusions

The efforts toward SIP specialization of the XFDU XML schema have confirmed the conclusions

of the XML Schema Specialization Best Practices Study on the inadequacy of XML Schema

specialization mechanisms. It also confirms that the situation becomes much worse if the original

schema has not included a specialization point where it is needed

3.2 XFDU Toolkit Library Testing

The NASA XFDU Test effort consists of a series of “performance tests” and “operational tests”.

The performance tests are designed to identify the XFDU toolkit library APIs that must be

optimized to meet real world operational requirements. The operational tests involve the

implementation of scenarios using actual data products to provide both experience in the use of

XFDUs in actual systems and evidence of functionality and interoperability in the targeted

environments. This section summarizes the tests run during the research period, the most recent

test results, and preliminary conclusions and issues.. It must be emphasized that the purpose of

these tests was to evolve what had been a proof of concept prototype into a reference

implementation of the XFDU standard that could be used by “early release” customers.

Performance improvements were intended to provide acceptable solutions rather than optimal

solutions.

Unless otherwise stated all test were performed using the following:

 IBM ThinkPad T42 with 1.8GHz PentiumM Processor and 1GB of RAM

 Fedora Core 4 Linux OS

 JDK 1.5.0_05

3.2.1 Testing Performance of Underlying Compression and Packaging Utilities

Use Case Description

The ability to extract the manifest from an XFDU Package is important in a heterogeneous, open

environment where several third parties have extended the XFDU schema and added new

transformation and validation “plug-in’s.” The goal of this extraction is to use the information in

the package header component of the extracted of XFDU manifest to analyze if all the needed

mechanisms (“must understand”) are present before unpacking the entire XFDU. This set of tests

is intended to investigate the performance of common binary archive formats for this operation.

Test Description

The first set of tests investigated extracting a relatively small XML file from a large, compressed

binary archive created using the widely available binary archive formats ZIP and JAR. In this set

of tests the Linux operating system ZIP command and the java classes provided in JDK under

java.util.zip and the java.util.jar packages were used to create the archives and extract the XML

file.

Two basic package designs were used in these experiments:

14

1.	 31000 files of various content and size were packaged into a binary archive along with a

715-Byte XML file using a zip command provided with the OS. The resulting ZIP file

had size of 639MB.

2.	 Two DIVx compressed files of average zip 700MB each were ZIPed into a ZIP archive

along with a 715-Byte XML file using a zip command provided with the OS. The

resulting ZIP file had size of 1.33GB.

The tests were then repeated using JAR as the packaging methodology instead of using the zip

command.

Finally the tests were again repeated using tar/gzip as the packaging methodology.

Test Results

Table 1. Package creation and file extraction times versus type of binary file packaging

Test/ Runtime Runtime Runtime Runtime Runtime Runtime

Iteration (zip,31000 (jar,31000 (tar/gzip 31000 files) (zip,2 large (jar, 2 large (tar/gzip, 2

files) files) files) files) large files)

Extract XML

File / 1

70 ms 68 ms 17.5 sec 32 ms 31 ms 68 sec

Extract XML .1 ms/run .1 ms/rum 25 sec .2 ms/run .4 ms/run 34 sec

File / 2-10

Package 428 sec 531 sec 205 sec (using tar with 204 sec 356 sec 204 sec

creation gzip output option)

325 sec (using tar and gzip

separately)

Unpacking 243 sec 186 sec 122 sec 128 sec 156 sec 125 sec

Observations

	 As a practical matter, it takes an insignificant amount of time to extract a small file from

an archive regardless of the number, content and size of files in either a JAR or ZIP

archive.

	 The fact that, during all the runs, only first iteration took a noticeable amount of time (30

to 70 milliseconds) to extract the file is attributed to the nature of how JVM works. That

is, during the first iteration all class loading and initialization takes place. After that the

actual extraction time was less than 1 ms for JAR or ZIP

	 Package creation times using the operating system ZIP or JDK java.util.jar is 7 to 9

minutes for the 31000 file case and 3 to 6 minutes in the 2 file case. In both cases the

unpacking time using JAR or ZIP is 2 to 4 minutes.

	 The TAR/GZIP package creation time was approximately 3.5 minutes in both cases while

the unpackaging time was approximately 2 minutes. However the time to extract the

small file is measured in tens of seconds rather than the almost instantaneous response for

JAR and ZIP.

Conclusions and Issues

15

	 No special implementations or best practices are required to allow the XFDU manifest to

be extracted prior to unpacking the entire archive from many common binary archive

formats(e.g., zip , jar) that contain object indices.

	 In the case of binary archive formats like TAR/GZIP that do not have object indices, the

manifest would need to be one of the first items on the virtual tape image presented to the

application. The effects this would have on the toolkit library and other archive format

processors would need to be investigated.

3.2.2 Performance Testing of XFDU Toolkit Library Interfaces

Use Case Description

This use case uses the artificial collections created in the previous use case to measure the

performance of the basic XFDU toolkit library APIs and underlying JAVA implementations.

Test Descriptions

1.	 Create an XFDU package in ZIP format from a directory structure with 31000 files

a.	 Using XFDU APIs, a package is created both with and without checksum

computation and saved in ZIP format.

b.	 Using XFDU APIs, the manifest is extracted from the package.

c.	 Using XFDU APIs, a randomly selected dataObject (file) is extracted from the

package.

d.	 Using XFDU APIs, the package is opened and the files are expanded optionally

validating any checksums recorded in the XFDU Manifest object.

2. Create an XFDU package in ZIP format out of a directory structure with 2 DivX compressed

files

e.	 Steps a-d above

3-4. Repeat tests 1 and 2 using the JAR binary archive format

5-6. Repeat tests 1 and 2 using the TAR/GZIP binary archive format

Initial Test Results

	 It was observed that package creation of the 31000 object XFDU using the XFDU API

did not complete after 12 hours. Upon closer investigation, it became obvious that the

slowness could be attributed to usage of the JAVA implementation of XPath while

constructing the Java Object tree.

	 As a result, that part of the XFDU API was completely rewritten to perform necessary

lookups using only memory object references. This improved performance significantly

(from hours to minutes). The observed behavior (in regards to using XPath) only become

noticeable when thousands of files are being packaged which results in an XFDU

manifest of significant size.

Test Results after Modification to XFDU Toolkit Libraries

16

Table 2. XFDU Toolkit Library Performance

Operation Time

(seconds)

(zip,

31000 files)

Time

(seconds)

(zip,

2 large files.

Time

(seconds)

(jar

,31000 files)

Time

(seconds)

(jar,

2 large file)s.

Time

(seconds)

targzip,

31000 file)s.

Time

(seconds)

(tar/gzip,

2 large file)s.

Package

creation and

saving

Without

checksum 882

With checksum

939

Without

checksum 995

With checksum

1175

Without

checksum 1000

With checksum

1060

Without

checksum 960

With checksum

1141

Without

checksum 917

With checksum

968

Without

checksum 357

With checksum

381

Writing of

files (copying

of bytes to zip

stream)

819 990 940 955 865 354

Package size 850 MB 1.3 GB 850 MB 1.3 GB 720 MB 1.4 GB

Manifest size 11MB 1.3KB 11MB 1.3KB 11MB 1.3KB

Manifest

extraction

25 .023 23 .020 70 (45 seeking

+25 extracting)

65 (65 seeking

+.02 extracting)

File extraction Depends on file

size

169 seconds Depends on file

size

180 seconds Depends on

file size + tar

position

File 1: 68 sec

File 2:102 sec

(33 seeking

+69 extracting)

Package

opening

including

validation

Without

checksum 400

With checksum

422

Without

checksum 175

With checksum

195

Without

checksum 372

With checksum

398

Without

checksum 183

With checksum

193

Without

checksum 185

With checksum

190

Without

checksum 139

With checksum

148

Other Tests

Deletion of a dataObject and all references to it from a manifest containing 31000 data

objects and totaling 11MB in size:

 with Commons JXpath - 26000 milliseconds

 with binary search and pure in-memory operations - 8 milliseconds

Observations

	 The time required for packaging and unpacking the test XFDUs using the XFDU Toolkit

interface was two-three times longer than the time needed to create packages in the

previous test of the native interfaces. However the major reason appears to be the

performance of the JDK implementations of the compression methods rather than added

processing needed to create XFDU structures.

 The TAR/GZIP tests confirm the conclusions in the previous section that the extraction

of the manifest and extracting specific files will not work unless the underlying package

has indices to enable efficient random access and extraction of single objects

	 The delete object test appears to confirm degradation of performance while using Xpath

on a large XML tree (or Java Object graph representing such a tree) shows general

problem with doing Xpath queries on large XML tree.

17

3.2.3 Usability of XFDU Information Model and Toolkit Performance with Current
Archived Data Products

This section describes testing that involved the XFDU packaging of NASA Planetary Science

data and USGS agricultural data.

3.2.3.1 Transfer of PDS Archive Volume from JPL to NSSDC

Use Case Description

The National Space Science Data Center (NSSDC) is currently using a Standard Formatted Data

Unit (SFDU) based data packaging approach to wrap data from producers to generate a SIP and

also to form the AIP. The resulting package contains an NSSDC attribute object and the

individual data files. The NSSDC attribute object contains all the attributes about the data files

that NSSDC desires for its internal management. NSSDC has been working with the Planetary

Data System (PDS) at the Jet Propulsion Laboratory (JPL) to package their large volume

directory structures that eventually will be over 20 GB. The purpose of this use case is to use the

XFDU to generate a similar package and observe any issues.

A PDS data volume and an NSSDC Attribute Object corresponding to that data volume were

provided for this testing. The PDS data volume consisted of a standard PDS data volume

directory structure and was 600MB in size. The NSSDC attribute object was 439 KB in size and

was taken from an NSSDC packaging of the PDS volume using an NSSDC AIP implementation

conforming to the SFDU standard. The use of the pre-existing NSSDC attribute object simplified

the gathering of attributes values for incorporation into the XFDU.

Test Summary

The following software was developed for this test:

1.	 A simple Parameter-Value-Language (PVL) parser was written to parse the NSSDC attribute

object whose attributes were expressed in PVL.

2.	 A directory crawler and package creator was written to automate the task of crawling the

directory structure, identifying the appropriate attributes from the NSSDC attribute object,

and calling the XFDU library to create the XFDU package.

The following steps were involved in the actual test:

1. The above-specified software would crawl the PDS data volume directory structure obtaining

information about each file and directory, and it would use that information for XFDU content

unit creation. For each file found, the appropriate meta-information was extracted from the

NSSDC attribute object and saved into a new directory structure created for metadata. This

structure paralleled the PDS volume directory but was one level down from the root.

2. Directory path and file name information from the NSSDC attribute object was used for

creation of directories and files. The checksum on each data file from the NSSDC attribute object

was was extracted and included in the XFDU manifest dataObject description for the file within

the byteStream element. A new checksum on the data file was calculated and included in the

XFDU manifest dataObject at the dataObject element level. They were found to agree.

18

3. Also in the XFDU manifest, each file from the PDS volume was correlated to the appropriate

file with metadata from the NSSDC attribute object via creation of an appropriate content unit.

Content units for directories were created to contain the Content Units of the data files and other

directories. In a separate test, a manifest version was also made where all Content Units

contained only data files and there was no nesting of Content Units.

4. An XFDU package in the form of ZIP file was created. The ZIP file included the PDS volume

directory tree, the NSSDC metadata directory tree mimicking the PDS volume tree but shifted by

one level, and the XFDU manifest file describing the packaging of the PDS data volume.

5. The package was unzipped using the XFDU Library. Each file’s integrity (checksum) was

verified to make sure that all files inside were intact.

Figure 5. Logical view of PDS data files and NSSDC metadata objects in XFDU package

The logical structure of the resulting XFDU is shown in figure 5. The original PDS supplied data

files are shown in ‘red’ and are contained in Content Units. They are also associated with

Representation Information via mime types. No attempt was made to improve this description of

the Representation Information, however such information is available from the PDS Standards

Reference at http://pds.jpl.nasa.gov/documents/sr/index.html.

Each Content Unit, holding a data file, also identified the associated metadata file via use of the

AnyMdID attribute. These metadata data files are shown in ‘green’. In addition, some general

19

http://pds.jpl.nasa.gov/documents/sr/index.html

attributes about the package from the SFDU were incorporated into the XFDU as an xml

‘package identification’ group of elements.

Test Results and Observations

 It took 8-12 person-hours between the PDS Systems Programmer and the XFDU Library

developer to code the test

 According to the PDS System Programmer, who was not intimately familiar with the

XFDU API, it was relatively easy to use

	 It took, on average (based on 3 consecutive runs), 4.5 minutes to create the ZIP package

(including metadata extraction from the NSSDC attribute object). This included 600MB

of PDS data and metadata from the NSSDC attribute object

 The resulting ZIP package was 450 MB in size

 Unzipping of the package took on average 3 minutes (based on 3 consecutive runs)

 The use of nested content units did not appear to make any noticeable difference in

package/manifest creation time when compared to runs with all content units at the same

level.

	 While the NSSDC attribute object involved did not exhibit the most complex view of

such an object, there were no major issues in mapping the attributes to the XFDU. One

minor issue is that the NSSDC SFDU for this data includes a checksum over the NSSDC

attribute object itself. Currently there is no standard provision for a checksum over the

XFDU manifest file.

Issues and Conclusions

The XFDU was able to package a PDS data volume of 600 MB containing many levels of

directories, and was able to return that directory volume with verification via checksum

validation. The packaging retained all of the metadata and its associations as recorded in the

SFDU packaging.

The packaging and unpackaging performance, using the created software and XFDU library was

quite reasonable especially given that no optimization has been done to the library.

The lack of overhead for nesting contentUnits and the difficulty of creating consistent “Order”

attributes indicates that nesting should be the ruling structuring indicator and the order attribute

should simply be removed or considered a text attribute to assist human understandability

The PDS Systems Engineer was concerned about future data products with data volumes in

excess of 20 GB. The XFDU developers discussed an XFDU schema enhancement to support

Logical Volumes mapped across multiple XFDU packages. This type shown below was initially

proposed in response to a PAIS SIP requirement. The PDS Systems Engineer felt this proposal

would solve his issue.

<xsd:complexType xmlns:xsd=http://www.w3.org/2001/XMLSchema
name="sequenceInformationType">

<xsd:attribute name="sequenceNumber" type="xsd:long" default="0"/>
<xsd:attribute name="numberInSequence" type="xsd:long" default="0"/>

</xsd:complexType>

20

http://www.w3.org/2001/XMLSchema

There was broad agreement for further testing involving transformations, relationships and much

larger data volume. A paper about the extended testbed was proposed for SpaceOps 2006 and an

abstract was submitted, This paper titled “A Distributed Testbed for the Exchange of XML

Aggregated Data Exchange Products for Mission Operations” (7) was accepted and will be

presented in June, 2006 and included in the Proceedings.

3.2.3.2 Developing an XFDU Version of USGS Data Submitted to NARA during
ERA Prototyping

Use Case Description

This test involves the use of USGS data, obtained by NARA as test electronic records, to create a

package using the XFDU draft standard. NARA traditionally organizes its records into Record

Group, Record Series, File Units, and Items, with mandatory and optional attributes for each

being made available for searching and management.

This test begins to flesh out the relationship of typical NARA record documentation to the

capabilities of the general, and flexible, XFDU specification. It goes beyond this to take

advantage of some XFDU relationship capabilities supporting OAIS concepts designed to lead to

fully understandable, readily transferable, and preservable information objects. In the process, a

better understanding of some strengths and weaknesses of the typical NARA record

documentation approach to electronic records should emerge. At the same time, strengths and

weaknesses of the XFDU packaging and description capabilities should also emerge.

Test Summary

The USGS data selected consists of 6 sets of agriculturally related information known as

ag_chem, ag_stock, ag_land, ag_expn, ag_crop1, ag_crop2. While all these data are packaged

into a single 38 MB zip file for this test, the primary concentration is on an analysis of the ag-

chem data packaging. The other data are similar in nature and do not add significantly to the

exploration of relationships.

The ag_chem data that we have chosen to package consists of 1987 statistics on agricultural

chemical use across the US. These statistical results are provided in two choices of format – one

called SDTS and the other called arcINFO. Accompanying these data are two additional files,

called documentation files, with one giving the documentation written using XML and also

conforming to the FGDC metadata standard. The other is a map image showing the percent of

land in each US county that received insecticide during 1987. Percent of land covered by

insecticide is just one of a large number of attributes available from the ag_chem data.

Future users of the ag_chem data will need to understand how to access and interpret the digital

files being provided. Therefore additional information describing structure and meaning of the

data files must also be preserved. Specifically this is the format specification for the SDTS files,

for the arcINFO file, for the FGDC documentation file, and for the image file. We have taken it

upon ourselves to act the part of the archive by either identifying common standards used, or by

actually acquiring standards from a Web search so that they can be incorporated into the package.

We have directly incorporated the standard specifications for SDTS, arcINFO, and FGDC

metadata into the package. However if the archive already has these standards in an accessible

location, the package could simply link to them via standard xml-based reference capabilities.

Regardless, the result is a package that can be guaranteed to be more understandable over time

than a similar package without identification and access to the format standards involved.

21

We have also incorporated text descriptions giving additional context and some provenance

information for the SDTS data, the arcINFO data, the documentation files, and the corresponding

standards specifications Finally, we obtained from NARA descriptive metadata for ag_chem at

the Record Group, Series, and File Unit levels. We’re led to understand that item level

descriptions are not generally produced, at least for electronic records. We’ve incorporated the

descriptive metadata into the package and linked it to the appropriate level of aggregation through

identifiers specifically denoting ‘descriptive metadata.’ The resulting package can be viewed as a

type of Archival Information Package in the OAIS sense. It might also be viewed as a type of

Submission Information Package prepared by a data producer. In this case, it is assumed that the

producer has negotiated with the archive and has been persuaded to include the additional

metadata. The producer would have worked with the archive to define and create such metadata

ahead of the actual submissions. Note that no effort has been made to incorporate any attributes

reflecting the draft PAIS SIP standard because this work is not currently sufficiently mature.

Test Results and Observations

A schematic of the XFDU package showing the contained data objects and their logical

relationships is given in figure 6. Additional metadata, including other pointers, used to

implement these relationships are not shown. The full xml manifest file, and the full zip package,

can be obtained from http://sindbad.gsfc.nasa.gov/xfdu/shared/ag4_xfdu.zip.

Figure 6: Schematic of the NARA/USGS XFDU showing data objects and their logical relationships

22

http://sindbad.gsfc.nasa.gov/xfdu/shared/ag4_xfdu.zip

The data objects involved are shown as colored rectangles. Data objects that are the primary

target of preservation, as obtained from NARA test data, are in purple. Their associated format

descriptions, which were collected from the Web by us for inclusion, are shown in orange.

Additional descriptions that we prepared, addressing context and provenance information, are

shown in blue. Typical NARA descriptive metadata, obtained by request from NARA, are shown

in green. Arrows between them show relationships whose type is given by their labels. For

example, an arrow with a label of “Rep. By” denotes that the object pointed to is the

Representation Information for the base object. Transparent rectangles, or partial rectangles, with

red lines denote XFDU content units. Dotted rectangles are used for data objects not present in

the package and stand for various format standards such as XML, PDF, etc. They are expressed

as mime types in this package. An archive will want to ensure that descriptions of these formats

are also preserved and available. Links to such descriptions could then also be included in the

package.

As can be seen from Figure 5, a highest-level content unit (CU) is associated with the record

group and is used to logically contain CUs for each record series. At this level, an archival

creator record (green) and a record group description (green) are associated as descriptive

metadata (dmdID). They have been transformed, from the text that NARA provided, into XML

data and incorporated directly into the XFDU manifest file.

At the next level down are the series CUs, and only the ag_chem series is expanded in the figure.

The other series in the package look similar. The ag_chem series CU has a single link leading to

NARA provided descriptive metadata (green), which we’ve put into a file called

‘ag_chem_series_description.txt’. It could have been transformed into xml and put directly into

the manifest, but we decided to keep it, and the other NARA provided descriptions, as separate

text files that can be found in the zip structure. The ag_chem CU contains three other CUs as the

same level.

The first ag_chem CU, with ID=ag_chem_sdts_cu, is a NARA file unit and is holding the SDTS

data object(purple) which is a tar-gzip file that, when expanded, conforms to the SDTS standard.

This is shown by the ‘Rep. By’ link to the SDTS logical specification held as a PDF file (orange).

Also linked to this CU is a ‘context’ description(blue) using the ‘anyMdID’ attribute. This

description talks about the relationships between the SDTS data object and the other primary data

objects, and it gives some provenance information. Also linked to this CU is the NARA provided

file unit descriptive metadata(green) called ‘ag_chem_sdts_fu_desc.txt’.

The second ag_chem CU, with ID=ag_chem_arcinfo_du, is a NARa file unit and is holding the

ArcINFO data object (purple) which is a gzip file that, when uncompressed, conforms to the

arcINFO standard. Its associated metadata have the same relationships as described for the SDTS

CU.

The third ag_chem CU, with ID-ag_chem_documentation_cu, is a NARA file unit and is holding

two other CUs. It has a link to a ‘context ‘ description (blue) that describes relationships to the

SDTS and ArcINFO data objects. It also has a link to the NARA provided file unit descriptive

metadata (green) called ag_chem_doc_fu_desc.txt. The first contained CU, with

ID=ag_chem_xml_doc_cu, holds documentation describing the data in the SDTS and arcINFO

data objects. It is in an xml form and is further described by the FGDC metadata standard

(orange) in the file ‘fgdc-std-001-1998.txt’. The second contained CU, with

ID=ag_chem_doc_cu, holds an insecticide coverage image in the gif format.

Conclusions and Issues

23

For the USGS Ag series of data records, there was no problem providing a view of the NARA

hierarchy of record aggregations and the association of NARA descriptive metadata with the

appropriate aggregation level. However we note that the series level description provided by

NARA not only addressed the file units to be aggregated, but it broke out descriptions down to

the level of identifying the total number of files when the sdts tar-gzip and arcinfo gzip files were

uncompressed and expanded. We would have thought that the series level descriptive metadata

might have been limited to talking about the contained file units only.

We were also able to associate format descriptions with the 3 primary data objects whose formats

are not widely used, thereby resulting in a package of information that has long lived potential.

In order to address relationships among the CUs, including addressing the history of how the

components of each were obtained, we used a ‘context’ metadata description for each of the three

file unit CUs. We also could have included an attribute on the SDTS CU and on the ArcINFO

CU that linked to the ag_chem.xml documentation data object. This relationship would have

been ‘anyMD’, or just ‘this is related metadata’. Formal relationships among CUs are not

currently supported but is a likely future topic for XFDU evolution.

What is not visible from the logical view is that most metadata links are implemented by pointers

to a metadata object, then the metadata object points to a data object, and then the data object

points to the actual byte stream located elsewhere in the zip structure. In addition, the SDTS and

ArcINFO data objects have transformation information associated with them that allows software

to uncompress and/or unpack (i.e., untar) them. Generating this test package also pointed out that

the draft XFDU standard does not make clear what to do when one transformation results in

multiple objects (e.g., untar) and then a subsequent transformation (e.g., decrypt) is to be applied.

This will be addressed to the XFDU developers.

3.2.4 Implementing Advanced XFDU Functionality in the XFDU Toolkit Library

The study of XML Schema specialization mechanisms indicates the importance of alternative

validation mechanisms to enable the level of specialization required for effective use of XFDU as

base schema for reuse in defining more specific packages for domain interoperability.

Currently the XFDU incorporates Schematron rules for the optional validation of semantic rules

specified in the XFDU recommendation. The experience with the PAIS SIP schema development

indicated that while this technique could be used to validate structural Specializations, the

complex rule definition and the apparent inconsistency of the XML schema would be significant

issues. The following experiment is an effort to allow verification of individual XML formatted

data and metadata using included or referenced XML schema without involving the specialization

of the underlying XFDU schema.

3.2.4.1 Validation of Data Objects using XSD Descriptions

The XFDU Package created during testing with JPL was used as basis for this test. The package

was chosen since it was already available and contains a reasonable number of data objects and

associated PVL objects. To conduct the test one of the PVL attribute objects existing in the JPL

XFDU package was converted to XML. An XML schema governs the XML that was generated.

The file reference of each of 296 data objects in the package was replaced with a reference to the

created XML file. Each data object’s repID attribute was filled with the reference to the metadata

object that encapsulated the reference to the created XML schema. Finally, necessary

adjustments were made to the informationPackageMap to include content unit pointing to the

XML schema metadata.

24

The object of the test was to use created XML schema to dynamically validate each of the XML-

formatted data objects. For this purpose a validation handler was created that implemented the

ValidationHandler interface defined in the NASA XFDU Java library. This handler was used as

custom validation handler plug-in for the validation API. The plug-in is then used during

execution of XFDU API for validation of an XFDU package. The validation handler used Sun’s

Multi Schema Validator in combination with SAX Parser to perform actual validation. For the

purposes of the test intentional errors were introduced in the sample XML file. During the

validation of each data object found in the package, the validation handler would traverse to its

representation metadata via the value of repID attribute and retrieve the corresponding schema.

Then, the validator would validate the content of the data object against the schema. Validation

errors were collected during the execution. For example, the test XML was modified to include a

string value in an element that requires an integer value thereby triggering a validation error.

Test Results and Observations

To measure performance overhead introduced by validation, the test was run 10 times. Validation

of 296 identical data objects of 1.8 KB each against one XML schema resulted in average

overhead of 1.8 seconds. This is an average of 5 milliseconds/object. The errors introduced in the

manifest were reported as: “ERROR: com.sun.msv.verifier.ValidityViolation: "error value" does

not satisfy the "integer" type “.

An additional scalability test indicated that performance of this technique would increase linearly

for up to 5000 objects

Conclusions

	 The validation handler used Sun’s multi schema validator in combination with a SAX Parser

to perform actual validation of XML-formatted data objects via associated representation

metadata in the form of their XML Schema (or DTD) doesn’t introduce any significant

overhead of XFDU processing.

	 The overhead would vary depending on parameters such as the size of data objects, number

of schema’s, size of each schema and number of errors in each data object.

 The XFDU library validation API can be used to plug in such validation tools.

 This technique would enable projects to validate more specialized XFDU instances without

creating complex and potentially conflicting specification of the underlying XFDU schema.

 It is important to determine the scalability of this and other non-XML schema validation

techniques

3.2.4.2 Scalability Testing

Use Case

The mechanism of validating individual data objects provides significant added value to the

XFDU Toolkit Library and may provide a practical solution to the unresolved issue of extending

the XFDU XML Schema by third parties. To validate the utility of this technique, the scalability

to a realistic maximum of the various factors that effect performance is needed. The following

was an informal scalability test using the number of data objects as the independent variable.

25

We also created a scalability test for Schematron using the size of the manifest as the independent

variable. This test was suggested by some experience during the extension of the XFDU Schema

as a proposal for SIP.

Test Results and Observation

Validation via XSD with 5 schemas and 5 test XML files spread over the sample:

Table 3. Validation times using XSD

Number of Data Objects Total Time for Validation Validation time/object

296 data object 1.5 seconds 5 ms

1200 data objects 4.5 seconds 3.8 ms

4888 data objects 14.8 seconds 3.0 ms

Schematron validation

Table 4. Validation Times using Schematron

Manifest Size (MB) Total Time for Schematron
validation

Time/Manifest MB

1.5 MB 133 seconds (2 min) 88.67 sec/MB

5 MB 1437 seconds (23.9 min) 287.4 sec/MB

11 MB 13800 seconds (230 min) 1254.5 sec/MB

Issues and Conclusions

The validation of individual data objects appears to be very scalable through 5000 objects. The

observation that the time/object decreases as the number of objects increase is probably due to a

fixed or slowly increasing initial overhead that is being distributed over an increasing number of

objects.

The Schematron mechanism does not seem to scale very well. Given that Schematron uses XSLT

and XPATH, the problem could be similar to the JXPATH issue we encountered in the XFDU

creation tests. However, we didn’t implement Schematron so it is doubtful we can optimize it.

We will need to include manifest size limits for the use of Schematron to validate XFDU rules.

Clearly, many more scalability test are needed however these tests indicate that using XSD

validation on individual data objects appears to be a viable mechanism for allowing third party

extensions that are independent of other extensions.

Issues and Decisions Regarding PAIS Standardization

The PAIS standard (also referred to as the SIP standard) is being edited and led by colleagues in

France at the Centre National D’Etudes Spatiales (CNES). Our research work during this period

has been to critique the concepts and the document, and to perform some initial testing of the

concepts. This work is discussed under the three categories given below.

26

4

4.1 Generality and Understandability of the Concepts

If a standard is to be successfully implemented, it must be as clear and as unambiguous as

possible to those expected to implement and use the standard. A major critique of the draft

document under review in May 2005, and discussed at the May CCSDS workshop in Athens,

Greece, was the difficulty in following the various concepts and their inter-relationships.

It should be noted that the subject matter is admittedly complex as one is attempting to provide a

general approach along with standard mechanisms that can be specialized as needed to support

formal modeling of data objects being submitted to an archive. The initial approach was to define

a generic model for a Descriptor which could be specialized by a domain, further specialized for

an Archive Project, and then instantiated to be the “Model of Transfer”. There was also the

concept of a generic packing slip, or ‘Generic SLIP Model’ that would be specialized for an

Archive Project and included with the “Model of Transfer”. These models would be exchanged

between Producer and Archive to arrive at a common understanding of exactly what was to be

transferred. It was also proposed that actual SIPs would be formed by instantiation of the SLIPs

along with the actual data objects in some type of transfer container.

As there was no recognition of any aspects about the underlying transfer containers, this

generality made it especially difficult to follow the concepts and to conceive of standardized

implementations. The concept of SLIPs was dropped in favor of looking at a direct mapping to

the XFDU container and its supporting services. This has lead to the SIP model as discussed

above and the intent to provide a mapping to XFDU in the SIP standard.

A further complication was the specification of 4 different Descriptor models corresponding to

the DOs, CDOs, Collections of DOs, and Collection of CDOs. There is now j ust one basic

Descriptor model to cover all these types of descriptor usages.

4.2 Organization of the Document

Despite the simplification addressed in Section 3.2.1, the overall organization of the document

has changed very little. It is still difficult to follow and to know just what is to be standardized.

Our analysis is that it provides a lot of process and work flow, and activities that might be done as

described or in some other way, along with some abstract and concrete syntax for Descriptors,

both data object and SIP. Work to be done is to clearly identify what is to be standardized and to

present this following a short section on overall context. The issue of specialization by domains,

archives, and Archive Projects can be dealt with in an Annex. This should make it much easier to

understand and to apply to various test cases.

4.3 Need to Support Differing Data Producer Views as to their Materials for
Submission

The current data model underlying the standard is that of ‘Descriptors’, or sets of attributes about

some type of ‘data object.’ While a hierarchical view of data objects makes good sense, it is not

clear that the concepts of DOs, CDOs, and Collections of these, with a one-way relationship from

CDO to DO, are sufficiently general or useful even for a limited space agency domain. In order

to get Producers to cooperate in generating a formal model of what is to be transferred, there must

be a framework in which to do this that is easy for them to adopt and modify. It must also work

for the Archive. Given the wide variety of Producers, even within the Space agencies, we have

suggested that work needs to be done to create test frameworks that can be presented to Producers

27

to gauge their effort in cooperating in the modeling process. The SIP standard needs to

encourage Producer cooperation in every way possible. In our view, this is the most critical and

difficult challenge to arriving at a useful SIP standard.

Producers will often have very different understandings about the types of data objects they

control, how they see the relationships among them, the extent to which the data objects have

documentation that can be used to understand them, the role of supporting software, and even the

importance of processing history. A given archive will have its own view on these matters.

Somehow, these views need to be bridged during any given Archive Project and the SIP standard

needs to aid or be neutral toward, but not impede, the bridging process.

The Archive and the Producer need to establish a common vocabulary and a set of common

concepts associated with the modeling of the data to be submitted. The current draft SIP

document argues that Producers should not have to understand the OAIS reference model, which

is certainly true. However we do not believe this means that some OAIS data modeling concepts

are not appropriate for establishing a common understanding between Producer and Archive. To

explore this further, we generated a paper entitled ‘Toward a Producer Questionnaire to Facilitate

Formal Modeling of Archival Submissions’ (8) that addresses the presentation of data modeling

concepts that might be adopted by Producers who have no knowledge of OAIS or Archive

specific terminology. Although the paper was not complete, as it was lacking some test cases, it

was provided to the most recent CCSDS workshop held in Toulouse, December 5-8, 2005.

Further work is needed to clarify the objectives and approach, and to try it out on potential

Producers. Results may impact the DO, CDO view and require a more flexible identification of

Descriptor types and their relationships

5 Summary Status, Findings, and Known Issues

5.1 Status of Specification Efforts

5.1.1 XFDU Status

The XFDU Structure and Construction Rules is currently being updated for release as a CCSDS

Redbook for agency review. All schema changes that were approved in the December 2005

CCSDS IPR Workshop are being incorporated and the explanatory text and examples are being

revised based on the schema changes and comments made by members of the IPR Working

Group on the current version of the Specification. The draft version of this material and an update

to the XFDU toolkit library incorporating both the schema updates and the additional validation

and transformation capabilities discussed in this report should be available at the end of March.

We will also be writing an tutorial and Best Practices Guide that will document our lessons

learned in the areas of XFDU design decisions for various sizes and designs of data products, an

XFDU toolkit library AIP usage guide, a guide to XFDU specialization and a tutorial on the use

of Transformation, packaging and validation plug-ins. The first version of this document should

be available at the beginning of May and will accompany the XFDU Structure and Construction

Rules Recommendation for agency/public review.

5.1.2 PAIS Status

The draft PAIS standard (6) is currently a CCSDS White Book which means that is still being

developed by the working group and is not yet ready for a formal review by the participating

agencies. There are incomplete sections, and it is questionable that all of the sections will remain

in the actual standard. The concepts and the ability to model data are being tested by the agencies

28

through the use of test cases. These results will be conveyed to our CNES colleagues and the

working group, and will be discussed at the next standards meeting currently scheduled for Rome,

June 12-16, 2006.

5.2 Findings and Issues Summary

5.2.1 XFDU Findings

There are 4 major findings:

1.	 The status of XML schema versioning and extensibility mechanisms is clearly a concern

in the development of the XFDU and in the use of XML, described by XML Schema, as

an Archival Format. This finding was a conclusion of the XML Schema Specialization

Best Practices Study and was confirmed by the practical efforts to extend the XFDU

XML schema to create the SIP mechanisms.

2.	 The mechanism of validating individual data objects using the Sun Multi-schema

Validator throuogh the XFDU toolkit validation interface provides significant added

value to the XFDU Toolkit Library and may provide a practical solution to the

unresolved issue of extending the XFDU XML Schema by third parties. Preliminary

testing of the current implementation has shown this mechanism to be highly scalable.

3.	 The approach of developing one or more high quality reference implementations in

parallel to the specification has proven very valuable in identifying unclear portions of

the specification and building confidence of potential users. This was demonstrated by

the NSSDC/PDS test-bed experience and commitment to expanding the scope of the test-

bed.

4.	 The modeling of the USGS/NARA products confirmed the flexibility of the XFDU

information model and the ability to easily express OAIS Information Model

Representation Networks

5.2.2 XFDU Issues

The current research effort has provided a good platform for further research but several

important areas require further investigation. These issues include:

1.	 Definition of mechanisms to enable effective implementation of behaviors and compact

definition of relationships for XFDU version 2. This was anticipated due to resource

availability in the current research period.

2.	 There is a requirement for much more performance and scalability testing using

anticipated data loads for NARA ERA As a prerequisite for this effort the XFDU Toolkit

library will need to be migrated to a 64 bit environment

3.	 There needs to be much more testing of the use XFDU structures using real existing data

4.	 There needs to be a study on the interoperation or at least the co-existence of the XFDU

and METS and best practices document to assist in the selection

5.	 The study of XML Specialization and Validation should be extended an include the

definition of an Archivable Profile of XML Schema and the potential use of of ISO/IEC

19757 Document Schema Definition Languages (DSDL) languages as an alternative to

XML schema

5.2.3 PAIS Findings

There are 2 major findings:

29

1.	 The use of Descriptors, as a set of attributes focused on a group of one or a few files, to

construct the formal model for negotiation between the Producer and the Archive,

appears promising despite issues with the current Descriptor modeling.

2.	 A PAIS standard that addresses the use of Descriptors and that maps the formal model

view into the XFDU standard’s capabilities still appears promising.

5.2.4 PAIS Issues

There are 3 major issues:

1.	 The current draft (6) is too difficult to understand and is also ambiguous in a number of

places. We are working to arrive at an agreed reduce scope and an unambiguous

presentation.

2.	 The current Descriptor model, although somewhat ambiguous, appears to be overly

constrained and thus insufficiently general to be readily applied to a wide variety of data

as understood by Producers.

3.	 The SIP model is incomplete and needs to be mapped to the XFDU capabilities.

However this can’t be fully completed until the Descriptor model is fully agreed.

References

1 Reference Model for an Open Archival Information System (OAIS) . Recommendation for

Space Data System Standards, CCSDS 650.0-B-1, Blue Book, Issue 1, Washington, D.C.:

CCSDS, January 2002 [Equivalent to ISO 14721:2002].

2. 	Standard Formatted Data Units - Structure and Construction Rules. Recommendation for

Space Data System Standards, CCSDS 620.0-B-2. Blue Book. Issue 2. Washington, D.C.:

CCSDS, May 1992. [Equivalent to ISO 12175]

3. 	“Report on XML Packaging,” World Wide Web Consortium, http://www.w3.org/1999/07/xml-

pkg234/Overview, July 2000.

4. Producer-Archive Interface Methodology Abstract Standard. Recommendation for Space Data

System Standards, CCSDS 713.0-B-1, Blue Book, Issue 1, Washington, D.C.: CCSDS, May

2003 [Equivalent to ISO 20652].

5. XML Formatted Data Unit (XFDU) Structure and Construction Rules. 	Draft Recommendation

for Space Data System Standards, CCSDS, White Book, Washington, D.C.: CCSDS,

September 15, 2004. (http://sindbad.gsfc.nasa.gov/xfdu/pdfdocs/iprwbv2a.pdf)

6. Producer-Archive Interface Specification. Draft Recommendation for Space Data System

Standards, CCSDS 651.1-W-03, White book, Issue 3, Washington, D.C.: CCSDS, December

2005. (http://public.ccsds.org/sites/cwe/moims-

dai/Public/Draft%20Documents/paimas_implementationWB_02.doc)

7. 	A Distributed Testbed for the Exchange of XML Aggregated Data Exchange Products for

Mission Operations, L. Reich, et al., to be published in SpaceOps 2006 Proceedings, Rome,

Italy, June, 2006.

8. Toward a Producer Questionnaire to Facilitate Formal Modeling of Archival Submissions,

30

http://www.w3.org/1999/07/xml-pkg234/Overview
http://www.w3.org/1999/07/xml-pkg234/Overview
http://public.ccsds.org/sites/cwe/moims
http://sindbad.gsfc.nasa.gov/xfdu/pdfdocs/iprwbv2a.pdf

edited by Sawyer, D. M., provided to CCSDS workshop in Toulouse, France, November

2005. (http://sindbad.gsfc.nasa.gov/xfdu/pdfdocs/questions_for_producers_3.pdf)

31

http://sindbad.gsfc.nasa.gov/xfdu/pdfdocs/questions_for_producers_3.pdf

Annex A: XFDU Validation Schema and Instance

The following demonstrates the sample XML that was used in the XML Validation test:

<STREAM_STRUCTURE>

<STREAM_INSTANCE_POINTER>6</STREAM_INSTANCE_POINTER>

<DIRECTORY_PATHNAME>./CATALOG/</DIRECTORY_PATHNAME>

<ORIGINAL_STREAM_STRUCTURE>

<STREAM_TYPE>7-BIT ASCII</STREAM_TYPE>

<STREAM_TYPE_TO_PACKAGER>BINARY</STREAM_TYPE_TO_PACKAGER>

<ORIGINATING_SYSTEM>Linux</ORIGINATING_SYSTEM>

<DATE_TIME_CREATED>2002-01-07T20:27:58</DATE_TIME_CREATED>

<DATE_TIME_LAST_MODIFIED>2002-01-

07T20:27:58</DATE_TIME_LAST_MODIFIED>

<FILE_ORGANIZATION>sequential</FILE_ORGANIZATION>

<RECORD_FORMAT>undefined</RECORD_FORMAT>

<RECORD_CONTROL>none</RECORD_CONTROL>

<STREAM_SIZE_BYTES>1453</STREAM_SIZE_BYTES>

<MAXIMUM_RECORD_LENGTH_BYTES>0</MAXIMUM_RECORD_LENGTH_BYTES>

<FILE_NAME>CATINFO.TXT</FILE_NAME>

<CRC_TYPE>NSSDC_A:V0</CRC_TYPE>

<CRC>9d4bcd87</CRC>

</ORIGINAL_STREAM_STRUCTURE>

<CANONICAL_STREAM_STRUCTURE>

<STREAM_TYPE>BINARY</STREAM_TYPE>

<STREAM_RECORD_DELIMITER>NONE</STREAM_RECORD_DELIMITER>

<STREAM_SIZE_BYTES>1453</STREAM_SIZE_BYTES>

<MAXIMUM_RECORD_LENGTH_BYTES>0</MAXIMUM_RECORD_LENGTH_BYTES>

<CRC_TYPE>NSSDC_A:V0</CRC_TYPE>

<CRC>9d4bcd87</CRC>

<RECOMMENDED_FILE_NAME>CATINFO.TXT</RECOMMENDED_FILE_NAME>

<PROCESSING_REPORT>FsGET_FN-P_UNA PASS: found ASCII with no carriage

control undefined records, AIPGEN-W_BA WARN: expected BINARY, but found only

ASCII</PROCESSING_REPORT>

<FORMAT_IDENTIFIER>ZDEFAULT</FORMAT_IDENTIFIER>

<ORDERED_APPLIED_ENCODINGS>none</ORDERED_APPLIED_ENCODINGS>

<ID_OF_ENCODED_FORMAT>ZDEFAULT</ID_OF_ENCODED_FORMAT>

</CANONICAL_STREAM_STRUCTURE>

<SUPPORTING_ATTRIBUTES/>

</STREAM_STRUCTURE>

32

The following demonstrates the schema governing the previous XML:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="STREAM_STRUCTURE">

<xs:complexType>

<xs:sequence>

<xs:element ref="STREAM_INSTANCE_POINTER"/>

<xs:element ref="DIRECTORY_PATHNAME"/>

<xs:element ref="ORIGINAL_STREAM_STRUCTURE"/>

<xs:element ref="CANONICAL_STREAM_STRUCTURE"/>

<xs:element ref="SUPPORTING_ATTRIBUTES"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="STREAM_INSTANCE_POINTER" type="xs:integer"/>

<xs:element name="DIRECTORY_PATHNAME" type="xs:string"/>

<xs:element name="ORIGINAL_STREAM_STRUCTURE">

<xs:complexType>

<xs:sequence>

<xs:element ref="STREAM_TYPE"/>

<xs:element ref="STREAM_TYPE_TO_PACKAGER"/>

<xs:element ref="ORIGINATING_SYSTEM"/>

<xs:element ref="DATE_TIME_CREATED"/>

<xs:element ref="DATE_TIME_LAST_MODIFIED"/>

<xs:element ref="FILE_ORGANIZATION"/>

<xs:element ref="RECORD_FORMAT"/>

<xs:element ref="RECORD_CONTROL"/>

<xs:element ref="STREAM_SIZE_BYTES"/>

<xs:element ref="MAXIMUM_RECORD_LENGTH_BYTES"/>

<xs:element ref="FILE_NAME"/>

<xs:element ref="CRC_TYPE"/>

<xs:element ref="CRC"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="STREAM_TYPE_TO_PACKAGER" type="xs:NCName"/>

<xs:element name="ORIGINATING_SYSTEM" type="xs:NCName"/>

<xs:element name="DATE_TIME_CREATED" type="xs:NMTOKEN"/>

<xs:element name="DATE_TIME_LAST_MODIFIED" type="xs:NMTOKEN"/>

<xs:element name="FILE_ORGANIZATION" type="xs:NCName"/>

<xs:element name="RECORD_FORMAT" type="xs:NCName"/>

<xs:element name="RECORD_CONTROL" type="xs:NCName"/>

<xs:element name="FILE_NAME" type="xs:NCName"/>

<xs:element name="CANONICAL_STREAM_STRUCTURE">

<xs:complexType>

<xs:sequence>

<xs:element ref="STREAM_TYPE"/>

<xs:element ref="STREAM_RECORD_DELIMITER"/>

33

<xs:element ref="STREAM_SIZE_BYTES"/>

<xs:element ref="MAXIMUM_RECORD_LENGTH_BYTES"/>

<xs:element ref="CRC_TYPE"/>

<xs:element ref="CRC"/>

<xs:element ref="RECOMMENDED_FILE_NAME"/>

<xs:element ref="PROCESSING_REPORT"/>

<xs:element ref="FORMAT_IDENTIFIER"/>

<xs:element ref="ORDERED_APPLIED_ENCODINGS"/>

<xs:element ref="ID_OF_ENCODED_FORMAT"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="STREAM_RECORD_DELIMITER" type="xs:NCName"/>

<xs:element name="RECOMMENDED_FILE_NAME" type="xs:NCName"/>

<xs:element name="PROCESSING_REPORT" type="xs:string"/>

<xs:element name="FORMAT_IDENTIFIER" type="xs:NCName"/>

<xs:element name="ORDERED_APPLIED_ENCODINGS" type="xs:NCName"/>

<xs:element name="ID_OF_ENCODED_FORMAT" type="xs:NCName"/>

<xs:element name="SUPPORTING_ATTRIBUTES">

<xs:complexType/>

</xs:element>

<xs:element name="STREAM_TYPE" type="xs:string"/>

<xs:element name="STREAM_SIZE_BYTES" type="xs:integer"/>

<xs:element name="MAXIMUM_RECORD_LENGTH_BYTES" type="xs:integer"/>

<xs:element name="CRC_TYPE" type="xs:NMTOKEN"/>

<xs:element name="CRC" type="xs:NMTOKEN"/>

</xs:schema>

34

Annex B: XML Schema Best Practices Survey

Best Practices Item HP Best Practices ESA Best Practices CNES Best

Practices

DON Best

Practices

EPA Best Practices XFDU

1. When creating an
XML schema,
should you specify a
targetNamespace?

Yes always. If schema will be

used in another

schema, then try not

to.

Yes Yes Yes, always Yes

2. When creating an
XML schema you
need to specify a
targetNamespace
URI, what type of
URI should you
choose: a URN or a
URL?

URI that resolves into
HTTP URL

Must be URN URN must be used HTTP URL

3. Should I set the
default namespace
to the XML schema
namespace or the
targetNamespace?

The cleanest and simplest
(but not the most compact)
approach is to not use the
default namespace and
map both the XML schema
namespace and the
targetNamespace using
prefixes

For known schemas,

uses recommended

prefixes (e.g. xsd).

Set targetNamespace

to be default if you

have one

Declare namespace for

XML schema, use xsd

prefix.

Don't use default

namespace.

Uses prefixes, has

targetNamespace, but

not default.

4. When specifying an
XML schema you
often have the
choice of placing a
value in an attribute
or an element,
which should you
use?

No consensus No attributes. Drifts more toward using

elements but allows

possibilities for attributes

Uses attributes for

simple data, elements

for complex data

5. Should local
element names be
qualified or
unqualified?

Element names should
always be qualified.

Keep two

s of schema: one

with qualified

another without;

Use qualified for

elements

Qualified Element names must

always be qualified.

No. elements are not

qualified

Would be fine to

qualify elements

6. Should all attributes
in a document be
namespace
qualified?

No, attributeFormDefault
should not be set; it should
be left to default to
"unqualified".

Use unqualified for

attributes

Qualified Use qualified for

attributes

No. attributes are not

qualified

7. When should I
declare and use a
global attribute?

 The attribute is used (or
is being designed to be
used) across several
disjoint XML schemas and
always has the same
meaning.

 You need to introduce a
new attribute into another
XML schema in order to
extend that schema.

Minimize usage of

global attributes

No attributes. Prohibits usage of global

attributes besides for

metadata purposes

Uses global attributes

for reuse in multiple

types/elements

Best Practices Item HP Best Practices ESA Best Practices CNES Best

Practices

DON Best

Practices

EPA Best Practices XFDU

8. I have an attribute
that is used several
times in different
elements in my XML
schema. What
should I do?

Create an attribute group
to wrap the attribute in,
and reference that attribute
group from the complex
types that contain the
attribute.

Use attribute groups No attributes. Don't use attributes

groups instead of

elements, unless for

metadata purposes.

Does just that

9. When should you
define a global vs.
a local element?

Always define elements
globally. Elements
within model groups
(choice, sequence)
should always use the
ref= form and never the
type= form.

Depending on

situation advocates

usage of both; as

well as mixed

design.

Use types for

structures

that will be

reused. Use

local elements

otherwise.

Mostly advocates

usage of global

elements

Advocates usage of

global types and

elements

Has several local

elements. Most types

are defined globally

and attributes are

then done as named

elements of

corresponding types.

Using global

elements resulted in

bad code generation

by JAXB

Strong believe that

type should be used.

10. When should you
define named
complex types vs.
inline anonymous
complex types?

Complex types should
always be named and
never anonymous.

Use complex named

types

Use types for

structures that

will be reused.

Use local

elements

otherwise.

Advocates usage

of global types

Advocates usage of

global types

Uses globally defined

types

11. When should you
define named
simple types vs.
inline anonymous
simple types?

Elements and attributes
should always use the
type= form and never
contain anonymous
types.

Advocates usage of

global simple types

Has some

anonymous simple

types

If some local simple

type is used for

enumeration that is

logically local, why

make it a global

type?

12. Should I allow
extension to my
content model?

Depends.... Discourages

usage of

substitutionGrou

ps.

Allows for blockage of

extension. Forbids

usage of abstract

datatypes and

substitutionGroups

Uses

substitutionGroups

This technique

appears to us as good

semi-controlled

technique to allow

extension model.

13. Should I allow
arbitrary extension
to my content model
via <xs:any>?

Depends Yes, but with

namespace

attribute

Not used

14. Should I use lax,
strict, or skip for the
processContent
attribute?

Lax mostly Now uses lax

15. Should I constrain
my simple type to
the exact data

Depends.... Not desirable Not used

36

Best Practices Item HP Best Practices ESA Best Practices CNES Best

Practices

DON Best

Practices

EPA Best Practices XFDU

expected using
facets, or should I
leave room for
extensibility?

16. Should I set
minOccurs and
maxOccurs so that
the data is as
expected or should I
allow a wider range
of values to leave
room for
extensibility?

Generally, set the
minOccurs and
maxOccurs to what could
reasonably make sense
and document it.

Advocates usage of

min/max occurs

Uses min/max occurs

17. If my data
structure is a
graph how should I
represent that in
my XML document
and my XML
schema?

Use pointing
mechanism via
attributes or
subelements, or key
and keyref constructs.

Prefer key/keyref to

ID/

Allows usage of

ID/IDREF in

certain cases

Advocates usage of

key/keyref.

Uses ID,IDREF

Theses constructs

seem to be simple to

manage and are

supported by schema

to object mapping

toolkits.

18. Should I use ID
and IDREF?

No, these DTD features
have problems that
prohibit general usage.

Prefer key/keyref to

ID/IDREF

Allows usage of

ID/IDREF in

certain cases

Never Uses ID,IDREF

See #18

19. Should I use
unique, key, and
keyref?

Yes, these XML
Schema constructs are
excellent for describing
relationships between
values in your schema.

yes Yes Yes No

See #18

20. How should you
name elements and
attributes?

Pick a descriptive name
without it being
excessively long. Use
lower camel case

Avoid long names

(more than 20

characters). Avoid

making abbreviations

removing vowels.

Use upper camel case

for elements, lower

for attributes. Use

noun to name

elements

Avoid

excessively

long names

which, while

more

meaningful,

also increase

the volume of

data exchanged

and do not

necessarily

assist

legibility. If

abbreviations

used their use

should be

consistent.

Only upper

case used for

elements and

attribute

values,. Use

ALIAS

attribute for

Lower camel case

for attributes,

upper camel case

for elements.

Avoid acronyms

and abbreviations.

Use Upper Camel Case

for elements and lower

camel case for attributes.

Avoid acronyms,

capitalize them.

Abbreviations shouldn't

be used. Tag names

should be concise.

Uses lower camel case

mostly

37

Best Practices Item HP Best Practices ESA Best Practices CNES Best

Practices

DON Best

Practices

EPA Best Practices XFDU

preserving the

original name.

21. How should you
name simple and
complex types?

The best practice is to
append the word "Type" to
all simple and complex
type names

No obligation

to append

“Type”

Append word

“Type”.

Append word “Type” Type is mostly

appended to type

names

22. Should I use default
values for attributes
and elements?

No No No, but sometimes

possible.

Used in one occasion.

23. Should I use fixed
attributes?

No No attributes. No, but sometimes

possible.

Not used

24. How should I
version my XML
schemas?

 Major—completely
different structure and
semantics, most likely
not backward
compatible, new
versions of applications
are written to use new
asset version

 Minor—backward
compatible changes
which introduce new
features without
removing or changing
the semantics of
existing structures

Have version

somewhere in

schema; have

version in instances;

make older versions

available; multiple

approaches listed

but no

recommendation

Use version in

namespace and

use schema

version attribute.

Namespace

must hold

major/minor

version. The

attribute may

also have

subminor version

(e.g. 1.0.3)

Must use XML schema

version attribute to

include major/minor

version. Advocates

having version in

schema file name. Must

have version attribute

on the root of XML

instances.

Has version attribute

on top element. Has

specificationVersion

element. Currently

discussed issue

Topic of ongoing

discussion

25. How should I
indicate the version
in the namespace
URI?

http://$domain/$groupSp
ecifier/$namespaceTitle/$y
ear-$month

Use URN syntax

with major and

minor versions

separated by a “:”

Use URN syntax with

major and minor versions

separated by a “:”

http://www.ccsds.org/

xfdu/2004

26. Can I reuse a
namespace for a
new version of the
schema?

For minor changes For minor changes Not used yet

27. Should I enable
mixed content in my
complexType
Element?

No No Allows Not used

28. How should I define
a simple type which
defines a possibly
extensible set of
enumeration
values?

Using QNames Uses string

29. Complex type code
lists

Allows usage of

code lists

Advocates usage of code

lists.

Not used?

30. How should I specify type substitution, <any> Use wildcard. Use sequence Allows usage of Sequence and choice; Uses

38

Best Practices Item HP Best Practices ESA Best Practices CNES Best

Practices

DON Best

Practices

EPA Best Practices XFDU

an element which is wildcard or choice and choice. No choice against usage of substitutionGroups

a container of some usage of wildcard.

set of elements? substitutionGr

oups

31. When should I use
<all> model group?

Never Never Never Never for data-centric

schemas, sometimes for

document-centric

Not used

32. Should I use
complex type
restriction in my
XML schemas?

No. Avoid Avoid Allows both

restriction and

extension.

Instructs to use

“final” on already

restricted types to

prevent further

restriction.

Allows for both

restriction and extension,

as well as usage of

“final” and “block” to

stop extensibility of

complex types.

Not used

33. Should I build up
element content via
multilevel
subclassing or using
composition?

Keep it simple, use
composition (not more
than 3,4 levels of
subclassing)

Trees shouldn't be to

long (and wide). Use

composition (not

more than 3 levels of

subclassing)

Composition mostly

used

34. Should I define a
global attribute
that will indicate to
implementation the
criticality of
extension
elements? (Must
understand
attribute)

No No attributes Has one, but not

currently used.

Should discuss how

to use it

35. Should I make my
elements nillable?

No No Not used

36. How should I define
an element that is
going to contain only
simple content?

For maximum
extensibility use the
complexType with
simpleContent form.

Use

simpleContent in

complexType

Not used

37. Schema header Yes Yes Must have. Doesn't have one

Should have one

38. How should I handle
a very large schema
document?

The best practice is to
break up your schema into
logical sections and
<include> these sections
into the main XML schema
file. Other namespaces
should be <imported>.

By breaking

and inclusion.

Strongly

advocates usage

of imports.

Allows for usage

of include in dev

and runtime

environments.

Advocates usage of

include and import

Uses <import>

39. How can I indicate
support for
extension schemas?

You can either directly
import the new extension
schema into the latest
version of your XML
schema or create a new
top level Schema

Not used yet

39

Best Practices Item HP Best Practices ESA Best Practices CNES Best

Practices

DON Best

Practices

EPA Best Practices XFDU

document which includes
your original XML schema
and imports the extension
XML schema[s].

40. I can't express all
the constraints that I
need using XML
Schema language,
what should I do?

No agreement Supplement with

another schema

language, software,

etc.

Schematron is used

via software.

41. Should I have some
unique identifiers for
schema
components?

Have unique id for

schema components

(not attribute of ID

type, just and

attribute called “id”)

Use unique

identifiers. Use

xsd:unique.

Use xsd:unique. Not used

42. Should I use
dangling type

Yes Not clear

43. Types vs. elements Use of types

preferred

Advocates

usage of type

for reusability

Uses types mostly

44. Should schema
location be
specified when
doing import?

No Yes Imports Xlink with

schema location

specified.

If it is not specified,

then any xlink

schema can be used,

do we care?

45. Binary attachments For small sizes use

base64 encoding; for

large sizes use XOP

Allows base64

encoding but doesn't

check the size. Intent

to use XOP when

implementation is

available.

46. XML data
compression

Use compression Compression can be

used outside of XFDU

47. Should
Xlink/XPoiner be
used?

No Uses xlink

48. XML
Encryption/Signing

Advocates where

appropriate

Not used

49. Usage of ref Ref must not

be used

Only used in

conjunction with

substitutionGroups

50. Usage of recursive
types

Forbidden Used

40

41

