

Tradeoff Studies about Storage and Retrieval Efficiency of Boundary Data
Representations for LLS, TIGER and DLG Data Structures

1 Introduction

Boundary information is viewed as an efficient
representation of image documents describing spatial
regions and is important for document image
management and information retrieval. Boundary
information represents one type of vector information
[1, Chapter 15]. Boundaries (or contours or outlines)
are mathematically described as convex or non-convex
polygons. One boundary can be formed by a set of
polygons, for instance, a donut shape boundary. Each
polygon consists of an ordered set of points or vertices.
In most GIS applications, points are georeferenced so
that boundary information can be integrated with raster
information. GIS examples of boundary information
would be parcels, eco-regions, watersheds, soil regions,
counties, Census tracts or U.S. postal zip codes. The
goal of our work is to study the impacts of choosing
boundary information representation on document
image management and informational retrieval, as well
as improve our understanding of the processing noise
introduced during representation conversions.

In general, boundaries can be spatially related or can
be spatially independent. The spatially related
boundaries can be either partially overlapping or totally
overlapping, such as, one contour being a subset of
another set of boundaries. For example, watershed and
U.S. postal zip codes boundaries are spatially
independent while the U.S. Census Bureau tracts and
blocks are spatially dependent in such a way that every
tract is formed by a set of blocks.

Given the variety of boundary information,
researchers have developed numerous file formats for
storing boundary information. These file formats are
designated in general for storing any vector data.
Vector data contain points, lines, arcs, polygons or any
combinations of these elements. Any vector data
element can be represented in a reference domain
defined by a latitude/longitude, UTM or pixel

David Clutter Peter Bajcsy
National Center for Supercomputing

Applications (NCSA), University of Illinois at
Urbana-Champaign (UIUC)

605 East Springfield Avenue, Champaign, IL
61820

Abstract

We present our theoretical comparisons and
experimental evaluations of three boundary data
representations in terms of storage and information
retrieval efficiency. We focus on three boundary data
representations, such as, location list data structure
(LLS), digital line graphs (DLGs) and topologically
integrated geographic encoding and referencing
(TIGER) data organizations. These three boundary
data representations are used frequently in the GIS
domain, and are known as ESRI Shapefiles (LLS), the
SSURGO DLG-3 soil files (DLG), and the U.S. Census
Bureau 2000 TIGER/Line files (TIGER). Boundary
information is viewed as an efficient representation of
image documents describing spatial regions. The goal
of our work is to study the impacts of choosing
boundary information representation on document
image management and information retrieval, as well
as to improve our understanding of the processing
noise introduced during representation conversions.

Our storage and retrieval efficiency tradeoff
evaluations are based on load time, computer memory,
and hard disk space requirements. The experimental
measurements are obtained with test data sets derived
from the SSURGO DLG-3 soil files and the U.S. Census
Bureau 2000 TIGER/Line files. Based on our
experiments, we concluded that LLS files will provide
the fastest boundary retrieval (40 times faster than
TIGER and 2.5 times faster than DLG) at the price of
file size (storage redundancy for LLS files is between
70% and 180% in our experiments). DLG format offers
a smaller file size, but is less efficient for boundary
retrieval. TIGER format also offers a compact physical
representation, at the cost of more processing for
boundary retrievals. These findings provide
quantitative support for institutional document image
management decisions.

coordinate system. The challenge in storing vector data
is to organize the data such that the positions and
geographic meanings of vector data elements are
efficiently stored and easily extracted.

Among all vector data representations in files, the
following data structures have been used frequently:
location list data structure (LLS), point dictionary
structure (PDS), dual independent map encoding
structure (DIME), chain file structure (CFS), digital line
graphs (DLGs) and topologically integrated geographic
encoding and referencing (TIGER) files. For detailed
description of each data structure we refer a reader to
[1].

The motivation of our work came from the fact that
while boundary data types are preferred over raster data
types when it comes to storing boundary information,
there are multiple memory storage schemes for
boundary information, as listed in the previous
paragraph. However, choosing the storage scheme that
minimizes memory requirements might have a
detrimental impact on boundary information retrieval
efficiency. Thus, our objective is to evaluate
quantitatively the tradeoffs between storage and
retrieval efficiency of multiple boundary data
representations for LLS, TIGER and DLG data
structures. The outcomes of our evaluations are useful
for (a) institutional decisions about archiving and
retrieving geospatial boundary information, and (b)
custom applications that perform processing of large
size, geospatial boundary data sets.

In this work, we evaluate three boundary data
representations for efficient boundary information
storage and retrieval. These three data representations
include (1) Census 2000 TIGER/Line files defined by
the U.S. Census Bureau and saved in topologically
integrated geographic encoding and referencing
(TIGER) data structures, (2) shapefiles defined by the
Environmental Systems Research Institute (ESRI) and
stored in location list data structure (LLS) data
structures, and (3) SSURGO DLG-3 soil boundaries
prepared by the United States Geological Survey
(USGS) and stored in digital line graphs (DLGs) data
structures. We overview the three data file formats first.
Next, we present our experimental results, and pair-
wise analysis of experimental results. Finally, we
summarize our work and add a few observations about
other possible trade-off metrics that might be
considered for making institutional decisions.

2 SSURGO DLG-3 Soil Files
The Soil Survey Geographic (SSURGO) Digital Line

Graphs (DLG) files provide geographical information
on the boundaries of soil types [9], [10], [11]. The
SSURGO data sets provide the highest spatial
resolution of soil type information among the three soil

geographic data bases, such as, the Soil Survey
Geographic (SSURGO) data base, the State Soil
Geographic (STATSGO) data base, and the National
Soil Geographic (NATSGO) data base.

2.1 File Format Description
DLG File Structure: The DLG file structure is
designed to support all categories of spatial data that
can be represented on a map. Three distinct types of
DLG are defined. Large-scale DLG data is digitized
from 1:24,000-scale USGS topographic quadrangles
(SSURGO). Intermediate-scale DLG data is digitized
from 1:100,000-scale USGS quadrangles (STATSGO).
Small-scale DLG data is digitized from 1:2,000,000-
scale sectional maps (NATSGO). Furthermore, three
levels of DLG data were defined in terms of the number
of attributes. It was found that the widest user
community would be served by DLG Level 3 (DLG-3)
data, which allows for the highest resolution
(SSURGO) and highest number of attributes to be
encoded (Level 3). The lesser levels of DLG encoding
are unused. DLG-3 encodes attributes using two codes:
a major code and a minor code. Similar attributes share
a major code. The SSURGO DLG-3 soil database uses
both the major code and minor code to encode the
primary key into a relational database to further
describe an area.

We gathered the SSURGO DLG-3 files for a few
counties in Illinois from
http://www.ncgc.nrcs.usda.gov/branch/ssb/products/
ssurgo/data/index.html. There are two files for each
county, such as, dlg.zip (digital line graph or DLG) and
tab.zip (ASCII attribute data available in Microsoft
Access 97 or later template database). The files contain
soil boundaries of 18,000 soil series recognized in the
United States. For the integration purposes, we have
explored the following information from the DLG-3
documentation: (a) file naming convention, (b) spatial
resolution, (c) spatial accuracy, (d) geographic
coordinate system and (e) storage format. In terms of
file naming convention, the dlg.zip file would contain
files with the following suffixes:

af - soil polygon DLG-3 file,
aa - soil polygon attribute file,
sf - special soil point and line DLG-3 file, and
sa - special soil point and line attribute file.

Regarding spatial resolution, soil survey is mapped at a
scale ranging from 1:12,000 to 1:63,360. The SSURGO
soil boundaries meet the accuracy standards for the
USGS 7.5-minute topographic quadrangles or the
1:12,000 or 1:24,000 orthophotoquads. Finally, the
storage format is Digital Line Graph optional format
with the attribute table data archived in ASCII table or
INFORMIX table format.

DLG Georeferencing Information: In terms of a
geographic coordinate system, coordinates are derived
from the North American Datum of 1983 reference

system that is based upon the Geodetic Reference
System of 1980. DLG data are recorded in either the
Universal Transverse Mercator (UTM) system or are
projected using the Albers Equal-Area Conic
projection. SSURGO DLG-3 data are normally reported
in the UTM system. STATSGO DLG data are reported
using the Albers Equal-Area Conic projection.

DLG Data Description: DLG data are reported as
nodes, lines, and areas. Lines are composed of a series
of nodes, and areas are composed of lists of lines (or
optionally nodes). The composition of an area or a line
can be encoded either as a list of the nodes that make up
the element, or as a list of points. Due to this
hierarchical structure, each element must be encoded
with a unique identifier.

A node is a coordinate on a map. Each node has an
Easting value and a Northing value in the UTM
coordinate system. Nodes define the points of each line
and are encoded with (1) a unique identifier and (2) the
coordinates that the node represents. Nodes can also be
encoded with attributes, if desired. Additionally, the
DLG format specification allows for a list of all lines
that begin and end at a node to be encoded in the record
for a node. This is redundant information, however, for
it is reflected in the line records as well.

Lines are a series of nodes. Each line is encoded
with a unique identifier, as well as its starting node and
ending node. The coordinates that a line follows are
also listed. In addition, a line can be encoded with
attributes.

An area is an enclosed section. Areas can be encoded
as either a sequence of lines or a sequence of nodes.
When encoded as a sequence of lines, the area will
contain a list of the lines that the boundary of the area
follows. This list contains the unique identifier for each
line; negative values signify that the points in the line
should be reversed. Islands within an area are delimited
by a ‘0’ in the list of lines. Areas are specified in a
clockwise direction around the perimeter of the area,
and islands are specified in a counter-clockwise
direction. In addition, an area can be encoded with
major and minor code pairs. When encoded as a
sequence of nodes, the area will contain a list of the
nodes make up the boundary of the area.

Software Development for SSURGO DLG-3 Files:
First, we implemented a loader for SSURGO DLG-3
files and added it to the list of other GIS files supported
by the NCSA I2K software package [5]. Next, we
extended our 2D visualization to support visualization
SSURGO DLG-3 files. We can visualize multiple
georeferenced vector data structures (boundaries and
sets of points) simultaneously. Third, we develop a
conversion function from SSURGO DLG-3 data
structure to ESRI Shapefile (LLS) data structure that
was needed for tradeoff comparison purposes.

The details of boundary information retrieval from
DLG-3 file format can be described as follows. The

DLG file format defines objects using a hierarchical
structure. The lowest objects in the hierarchy must be
retrieved prior to higher objects in the hierarchy. Thus,
in order to retrieve an area, all lines that make up the
area’s boundary must be retrieved beforehand.
Therefore, the DLG-3 loader in I2K will read all the
defined lines first. The lines are kept in a lookup table,
and indexed by their unique identifier for later use. The
size of this structure is directly proportional to the
number of lines.

Next, the areas are retrieved by populating I2K
defined data structures for boundary information
denoted a ShapeObject. In the ShapeObject, an area has
a list of the coordinates that make up its boundary. This
list is dynamically constructed when reading an area.
Areas that share a boundary will have copies of the
common coordinates. Once all areas have been read
and processed, the lookup table containing the lines can
be safely discarded. Finally, the coordinates for the
areas are copied into a ShapeObject.

2.2 Theoretical Evaluation
Memory requirements: The DLG-3 optional format
used in SSURGO soil databases provides a compact
physical representation of the boundaries of soil types
over a geographic area. There is little redundancy in a
DLG-3 file. Each area is a list of lines that do not
cross. The lines must share the same endpoints in order
to fully define an area. Thus, the only redundant
information is the endpoints of each line. The points of
adjacent polygons will be specified only once; in a line,
or series of lines. The boundary between adjacent, non-
overlapping polygons is represented as the same series
of line identifiers in the file. In addition, representing
all data in a fixed-length ASCII form makes for smaller,
highly compressible files. Abundant white space exists
in DLG-3 files to maintain the fixed length. Typical
compression algorithms will compress a series of
identical characters efficiently. Thus, when a DLG-3
file is subject to compression, the white space will
compress well.
Boundary information retrieval requirements: The
boundary information retrieval from DLG-3 file format
can require significant processing resources. All
boundary coordinates are stored as ASCII characters in
a DLG file. In order to use the polygons specified in a
file, each coordinate must be converted into a native
numeric value. This conversion can be quite costly,
and takes approximately 27% of the time to load
SSURGO DLG-3 files in I2K.

3 Census 2000 TIGER/Line Files
The Census 2000 TIGER/Line Files provide
geographical information on the boundaries of counties,
zip codes, voting districts, and a geographic hierarchy
of census relevant territories, e.g., census tracts that are
composed of block groups, which are in turn composed

of blocks. It also contains information on roads, rivers,
landmarks, airports, etc, including both
latitude/longitude coordinates and corresponding
addresses [2]. A detailed digital map of the United
States, including the ability to look up addresses, could
therefore be created through processing of the
TIGER/Line files.

3.1 File Format Description
Because the density of data in the TIGER/Line files
comes at the price of a complex encoding, extracting all
available information from TIGER/Line files is a major
task. In this work, our focus is primarily on extracting
boundary information of regions and hence other
available information in TIGER/Line files is not
described here.

TIGER/Line files are based on an elaboration of the
chain file structure (CFS) [1], where the primary
element of information is an edge. Each edge has a
unique ID number (TIGER/Line ID or TLID) and is
defined by two end points. In addition, each edge then
has polygons associated with its left and right sides,
which in turn are associated with a county, zip code,
census tract, etc. The edge is also associated with a set
of shape points, which provide the actual form an edge
takes. The use of shape points allows for fewer
polygons to be stored.

Figure 1: Illustration of the role of shape points.

To illustrate the role of shape points, imagine a
winding river that is crossed by two bridges a mile
apart, and that the river is a county boundary and
therefore of interest to the user (see Figure 1). The
erratic path of the river requires many points to define
it, but the regions on either side of it do not change
from one point to the next, only when the next bridge is
reached. In this case, the two bridge/river intersections
would be the end points of an edge and the exact path
of the river would be represented as shape points. As a
result, only one set of polygons (one on either side of
the river) is necessary to represent the boundary
information of many small, shape defining edges of a
boundary.

This kind of vector representation has significant
advantages over other methods in terms of storage
space. To illustrate this point, consider that many

boundaries will share the same border edges. These
boundaries belong to not only neighboring regions of
the same type, but also to different kinds of regions in
the geographic hierarchy. As a result, storing the data
contained in the TIGER/Line files in a basic location
list data structure (LLS) such as ESRI Shapefiles,
where every boundary stores its own latitude/longitude
point, would introduce a significant amount of
redundancy to an already restrictively large data set.

In contrast to its apparent storage efficiency, the
TIGER vector data representation is very inefficient for
boundary information retrieval and requires extensive
processing. From a retrieval standpoint, an efficient
representation would enable direct recovery of the
entire boundary of a region as a list of consecutive
points. The conversion between the memory efficient
(concise) and retrieval efficient forms of the data is
quite laborious in terms of both software development
and computation time.

Another advantage of the TIGER/Line file
representation is that each type of GIS information is
self-contained in a subset of files. As a result users can
process only the desired information by loading a
selected subset of relevant files. For example, each
primary region (county) is fully represented by a
maximum of 17 files. Therefore, the landmark
information is separate from the county boundary
definition information, which is separate from the street
address information, etc. Those files that are relevant to
the boundary point extraction, and the attributes of
those files that are of interest, are the following:

• Record Type 1: Edge ID (TLID), Lat/Long of
End Points

• Record Type 2: TLID, Shape Points

• Record Type I: TLID, Polygon ID Left,
Polygon ID Right

• Record Type S: Polygon ID, Zip Code,
County, Census Tract, Block Group, etc.

• Record Type P: Polygon ID, Internal Point
(Lat/Long).
We denote this subset of files as “Census boundary
records”.

3.2 Theoretical Evaluations
This work extends our previous study about the
tradeoffs between U.S. Census Bureau TIGER and
ESRI Shapefile data representations that are
documented in [7].

4 ESRI Shapefiles
A shapefile is a special data file format that stores non-
topological geometry and attribute information for the
spatial features in a data set. The geometry for a feature

is stored as a shape comprising a set of vector
coordinates in a location list data structure (LLS).
Shapefiles can support point, line, and area features.
Area features are represented as closed loop polygons.

4.1 File Format Description

A shapefile must strictly conform to the ESRI
specifications [4]. It consists of a main file, an index
file, and a dBASE table. The main file is a direct
access, variable-record-length file in which each record
describes a shape with a list of its vertices. In the index
file, each record contains the offset of the
corresponding main file record from the beginning of
the main file. The dBASE table contains feature
attributes with one record per feature. The one-to-one
relationship between geometry and attributes is based
on record number. Attribute records in the dBASE file
must be in the same order as records in the main file.

All file names adhere to the ESRI Shapefile 8.3
naming convention. The 8.3 naming convention
restricts the name of a file to a maximum of 8
characters, followed by a 3 letter file extension. The
main file, the index file, and the dBASE file have the
same prefix. The suffix for the main file is ".shp". The
suffix for the index file is ".shx". The suffix for the
dBASE table is ".dbf".
Examples:
1. main file: counties.shp
2. index file: counties.shx
3.DBASE table: counties.dbf
 The implementation of shapefile loading, writing and
visualization routines was straightforward since the I2K
ShapeObject data structure maps directly to the
shapefile file organization.

4.2 Theoretical Evaluation
There are numerous reasons for using ESRI Shapefiles.
ESRI Shapefiles do not have the processing overhead of
a topological data structure such as a TIGER file. They
have advantages over other data sources, such as faster
drawing speed and edit ability. ESRI Shapefiles handle
single features that overlap or are noncontiguous. They
also typically require more disk space but are easier to
read and write. However, the drawbacks of ESRI
Shapefiles are in their storage inefficiency and poor
scalability. We will quantify these tradeoffs in the
experimental section.

5 Experimental Evaluations
In this section, our goals are (a) to experimentally
evaluate the tradeoffs between storage and retrieval
efficiency, and (b) to explain the tradeoffs by
comparing fundamental format differences. In order to
perform experimental tradeoff evaluations, we used two

datasets including (1) the SSURGO soil boundaries for
Madison County, IL, stored in DLG-3 file format and
(2) the U.S. Census Bureau boundaries of Illinois
counties, zip codes, census block and census tracts
stored in TIGER/Line file format. The preparation of
these two data sets is outlined in Section 5.1. The
results of all experiments are provided in Sections 5.2
and include comparisons of DLG & LLS, and DLG &
TIGER & LLS. Sections 5.3, 5.4 and 5.5 explain the
pair-wise format comparisons based on the
experimental results.

5.1 Data Preparation
It is apparent that the experimental evaluations will
depend on the size of test data. Ideally, one would like
to show results as a function of input file size.
However, the practical difficulty arises when one is
looking for those test data sets that contain identical
boundary information but are represented by LLS,
TIGER and DLG files. We were not able to find such
files.

We explored the possibility of finding software tools
that would convert vector files from one file format to
another so that we could create multiple test files with
identical boundary information stored in LLS, TIGER
and DLG formats. We have concluded that while LLS
formats (ESRI Shapefiles) are supported by most GIS
software packages, there is a very limited support for
DLG and TIGER file formats. This corresponds to our
assessment of the implementation complexity to
support loading of TIGER, DLG and LLS formats in
this order from the most time consuming to the least
time consuming. The implementation effort usually
doubles when both loading and writing routines have to
be supported.

Based on our findings about conversion tools and the
availability of GIS software packages at our institution,
we created data sets by (1) implementing TIGER to
LLS, and DLG to LLS conversions, and (2) using
ArcToolBox for LLS to DLG conversion. We created
several test data sets that are described next.

In the first experimental tradeoff evaluation, we used
a file pair consisting of the original DLG file (SSURGO
soil boundaries) and the LLS file converted using I2K.
This file pair is denoted as the test data set #1.

In the second experimental tradeoff evaluation, we
prepared a triplet of files consisting of (a) the original
TIGER files for the state of Illinois, (b) the LLS files
obtained by extracting the U.S. Census Bureau
boundaries of counties, zip codes, census block and
census tracts from the TIGER files and converting them
by using our software implementation, and (c) the DLG
file converted from the already obtained LLS file using
ArcToolBox. This triplet of files provides a test data set
for fair performance evaluations in terms of “Total
Load Time” and Load RAM Required” parameters.
However, this test data set cannot be used for

performance evaluations in terms of “Hard Disk”
because the TIGER files include all boundary types
(including voting districts, and so on), of which four
were extracted to LLS and DLG file formats. This file
triplet is denoted as the test data set #2.

We expanded the second experimental tradeoff
evaluations in Section 5.2 by partitioning the test data
set #2. We used sub-sets of the original TIGER files for
the state of Illinois in order to vary the number of
nodes. In order to explore load time dependency on the
number of nodes (boundary points), we selected 1, 2, 3,
4, 10, 15, or 24 counties from the original TIGER files,
and formed several triplets of test data sets (TIGER,
LLS and DLG). We always chose a subset of counties
forming geographically contiguous regions so that
neighboring counties would have some overlap of
boundary points. This set of file triplets is denoted as
the test data set #3.

5.2 TIGER, LLS, and DLG Tradeoff
Evaluations

The experimental results of our tradeoff evaluations
between storage and retrieval efficiency are presented
in Tables 1 and 2. As described in the previous section,
the test data sets #1 and #2 {(DLG, LLS) and (TIGER,
LLS, DLG)} were formed from the original DLG and
TIGER files by converting them into other file formats

using Arc ToolBox and our software. Each file format
was then read in separately, and the storage and loading
measurements were recorded in Tables 1 and 2.

Before explaining the experimental results by
comparing pairs of file formats presented in Sections 2,
3 and 4, we posed the following two questions. First, is
there any dependency of storage on the boundary
content? In other words, if we had a file with watershed
and zip code boundaries, would the results be different
from evaluating Census tracts and blocks, and how?
Second, can we predict the total load time as a function
of the number of polygons/nodes without exhaustive
experimentation? Or in other words, what would be the
dependency between boundary information retrieval
and the number of retrieved nodes?

Storage Dependency on Boundary Content: The
answer to the first question is related to the amount of
boundary overlap. Ideally, one would experiment with
sets of boundaries that span cases from a zero overlap
(e.g., non-adjacent county boundaries) to an
overlapping hierarchy of polygons (census blocks,
block groups and tracts). Our data sets represent the
cases of partial overlap (SSURGO) and large overlap
(TIGER) of boundaries. Thus, the experimental results
will vary as a function of boundary content in the
following way: the more overlapping boundaries, the
smaller hard disk requirements for TIGER format in

Table 2: Test data#2: U.S. Census Bureau 2000 TIGER/Line files for the state of Illinois (102 counties). Loading is
constrained to block groups, zcta, census tract, and counties ((Total Load Time and Load RAM Required
parameters). Hard Disk and Number of Nodes measurements for LLS and DLG formats contain only block groups,
zcta, census tract, and county boundaries, whereas the same measurements for TIGER format include all types of
boundary information for the state of Illinois.

Total Load Time
(s) Hard Disk (MB)

Unzip

Load RAM
Required (MB)

Zip Unzip

Number of Nodes

TIGER 1300.2 200 112 940 2,176,719
LLS 12.7 37 27 47 641,955

DLG-3 12.9 52 8 24 457,850

Table 1: Test data#1: SSURGO Soil Database, Madison County, IL. Loading time includes all SSURGO soil
boundaries. Hard disk measurements pertain to all boundaries in the original SSURGO files.

Total Load Time
(s)

Hard Disk
(MB)

Zip Unzip

Load
RAM

Required
(MB) Zip Unzip

Number
of

Nodes

LLS
(Shapefile) 41.36 290 65 90 2,787,490

DLG 105.72 103.72 380 23 79 2,787,790

comparison with DLG and LLS (in this order), and the
smaller load RAM requirements for LLS format in
comparison with DLG and TIGER.

Our conclusion is supported by comparing the
number of loaded nodes versus the number of unique
nodes using the test data sets #1 and #3, and by
inspecting the LLS files. By evaluating the ratio s of
these two numbers (loaded nodes versus unique nodes)
using the test data #2 (partial boundary overlap), we
obtain s equal to 2.02 (5630800/2787490). The same
evaluation of the ratio s using the data set #3 (large
boundary overlap) led to an average ratio value equal to
2.6416. The measurements using the test data set #3
(ZCTA, Block Group (BG), Census Tract (CT), and
County boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois
counties) are shown in Figure 2.

We took additional measurements to compute the
ratio s for (a) watershed and county boundaries (s =
84,601/47,636=1.776), and (b) watershed and ZCTAs
boundaries (s=344,533/201,767=1.708). We observed
that approximately 70% of the points in both (a) and (b)
are shared between multiple boundaries. Thus, the
inefficiency of LLS format due to the duplicate points
of neighboring boundaries would not decrease below
s=1.7 for the test data.

LLS File Format

y = 2.6416x + 2281.2
R2 = 1

0
50000

100000
150000
200000
250000
300000
350000
400000

0 20000 40000 60000 80000 100000 120000 140000

Number of Unique Nodes

N
um

be
r o

f L
oa

de
d

N
od

es

Figure 2: Storage efficiency measurements of LLS files
using the test data set #3 (Hierarchical boundary
content). The points correspond to evaluations for data
sets with boundaries for 1, 2, 3, 4, 10, 15, and 24
Illinois counties.

Boundary Information Retrieval Dependency on
Number of Nodes: In order to answer the second
question about the relationship between a load time and
a number of nodes, we divided the Total Load Time
into four components: t1, t2, t3 and t4 (see Equation
below and Figure 3). The first component t1
corresponds to the time to construct polygons from an
ordered list of edges. The second component t2 is for the
time to create an ordered list of edges from an
unordered set of edges. The third component t3
represents the time to convert ASCII characters to
numeric type values. The last component t4 is the time

to load any sequence of bytes (ASCII characters or
binary values) from a file. We introduce these time
components based on our understanding of the three
vector file formats.

1 2 3 4Total Load Time t t t t= + + +
 (1)

The zero and non-zero time components are
summarized for each file format in Table 3. The total
load time as a function of the number of nodes can be
predicted by knowing that the time components t1, t2, t3
and t4 are linear with the increasing number of nodes.
The quadratic dependency of the time component t2
(creation of ordered list of edges) as a function of the
increasing number of nodes is avoided by the fact that
the unordered edges are grouped by counties rather than
by states. Based on our empirical observations,

1 2 3t t t< < for a fixed number of nodes, which leads to
superior total load time for LLS format in comparison
with DLG and TIGER formats (in this order). Our
theoretical predicted Total Load Time as a function of
the number of nodes is shown in Figure 3 and is
independent of test data sets (addressed as the question
number 1 above).

Table 3: Total Load Time decomposition.

Total Load
Time=Sum(ti)

t1 t2 t3 t4

LLS X 0 0 X
DLG X 0 X X

TIGER X X X X

Figure 3: Total Load Time decomposition for TIGER,
DLG and LLS file formats.

Figure 4 : Theoretically predicted Total Load Time as a
function of the number of nodes.

We have obtained experimental measurements that

support our theoretically predicted Total Load Time
dependency on the number of nodes using the test data
set #3. Figure 5 shows our measurements and linear
trends, where the points correspond to data sets with
boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois
counties. These supporting measurements for “Total
Load Time” and “Load RAM Required” were
calculated by averaging three runs to load the ZCTA,
Block Group (BG), Census Tract (CT), and County
boundaries for each data set. The total number of nodes
and the number of unique nodes were measured (a) by
counting nodes inside of our software developed for
loading LLS and DLG files, and (b) by summing end
points and shape points for TIGER files according to
the accompanying TIGER documentation. While
TIGER files do not contain any duplicate points, LLS
duplicate points were found using a hash table in our
software.

TIGER: y = 0.0005x
R2 = 0.9862

DLG: y = 2E-05x
R2 = -0.0932

LLS: y = 8E-06x
R2 = 0.9914

0

50

100

150

200

250

0 100000 200000 300000 400000 500000

Number of Loaded Nodes

To
ta

l L
oa

d
Ti

m
e

[s
] LLS

DLG
TIGER
Linear (TIGER)
Linear (DLG)
Linear (LLS)

Figure 5 : Total Load Time vs. Number of Nodes for 1,
2, 3, 4, 10, 15, and 24 counties with a best-fit line.

According to Figure 5 and based on our test data set

#3, the total loading time for TIGER files is
approximately 40 times slower than for LLS files, and

the total loading time for DLG files is about 2.5 times
slower than for LLS files. We collected measurements
for only 1, 2, 3 and 4 county aggregations in the case of
DLG format because the data preparation is very time
consuming.

5.3 DLG and LLS Comparisons
The DLG optional and LLS (or ESRI Shapefile)
formats specify boundaries over an area. Both formats
have geographic information that allows the boundaries
to be geo-referenced with other data sources. The
formats differ in how the data is structured and stored.

The first primary difference between DLG and LLS
is that DLG is stored in an ASCII format, while LLS is
stored in a binary format. DLG files are comprised of
ASCII characters organized into fixed-length logical
records of 80 characters. When loading a DLG file, all
data contained within must be converted to native data
types. For example, a coordinate is stored as the ASCII
characters “4598829.0” in the file. This must be read in
and converted to its numeric value. ESRI Shapefile, on
the other hand, stores the data as a series of bytes that
can be quickly converted to a data type. For the
previous example, the value “4598829.0” would be
stored as 8 bytes that can be directly converted into a
numeric value However, it may be necessary to reverse
the order of the bytes to account for the byte order
(little or big endian). The reading (and possible
reversing) of bytes for a shapefile is far simpler than the
ASCII-to-native transformation needed for DLG.

This primary difference in representation (ASCII vs.
binary) greatly affects the loading times of the two
approaches. Each entry in a DLG soil database must be
read individually, and then converted to a numeric
value. This is the most time-consuming operation when
loading the data, typically over 25% of the loading time
of a DLG file. Loading ESRI Shapefile, however, is
much quicker. It is simply reading a series of bytes
from a file, with little conversion needed. This
quickness comes at the price of a larger file size for the
ESRI Shapefile. In an examination of one county, the
DLG data needs approximately 79 MB of disk space
uncompressed, 23 MB compressed. The ESRI
Shapefile, on the other hand, needs 90 MB of disk
space when uncompressed, and 65 MB when
compressed. These results are summarized in Table 1
and Table 2. The difference in compressed sizes
between the two encodings is attributable to their
physical representations. DLG data contains fixed-
length records with white space between elements to
maintain the fixed length. This white space is
insignificant and can be easily compressed. On the
other hand, all binary data in an ESRI Shapefile are
significant and cannot be easily compressed.

The second difference between DLG and LLS is the
way how the data in a file are structured. DLG format
uses nodes, lines, and areas to define its polygons. In

each of the SSURGO DLG datasets examined so far,
nodes have not been used to define lines or areas. The
lines are a series of coordinate values, and the areas
have a list of the lines that make up the area. On the
other hand, LLS format lists the bounding box and the
points for each boundary contained within it. DLG
format makes more efficient usage of space; areas that
share lines will both reference the same line, while in a
shapefile, each coordinate, including coordinates shared
between different boundaries, is explicitly listed. In
addition, this difference makes it necessary to first read
all the lines in a DLG file before reading in the areas,
because the areas are made up of a list of the lines. The
lines have to be kept in a lookup table, and areas cannot
be fully processed until all lines have been read.

The consequence of the second difference between
DLG and LLS is that different data structures have to
be used when loading these files. Our goal is to have
one ShapeObject that contains all the polygons in a soil
database. DLG format gives no hint as to how many
points will be needed to store all the polygons in the
DLG file. Furthermore, it does not give the bounding
box for each polygon. In contrast, ESRI Shapefile
stores these values so that it is possible (a) to pre-
compute the space requirements needed and (b) to
allocate arrays to hold the data when loading a
Shapefile. With DLG, however, it would only be
possible to pre-compute the sizes by reading in all data
files twice. One time to determine the sizes, and one
time to actually read in the data. In addition, the
bounding box for each polygon is not stored in DLG,
and must be found while reading in the coordinates of
each area. This requires comparisons for each
coordinate to find the bounding box. In our
implementation, expandable arrays (or vectors) were
used so that the files only had to be read in once. Then,
once fully read, the data are copied into an array in the
ShapeObject, of the exact size needed. The problem
with this approach is that when the copy is made, two
arrays must exist in memory. The first will be the array
that contains the vector data. The second will be the
new ShapeObject array to copy the contents of the
vector into. This causes the memory requirements of
DLG-3 files to balloon to twice the total necessary size
in the worst case, when copying all the individual
points of all the polygons into one ShapeObject.

The third difference between DLG and LLS is
related to georeferencing information. SSURGO DLG
files are stored as quarter-quadrangles. Each
quadrangle represents 7.5 minutes of a degree of
longitude and latitude. It is necessary to load 64
individual files to represent a one degree block. ESRI
Shapefile does not need to be represented this way.
However, Shapefiles could be stored in this way, if
desired. All coordinates in SSURGO DLG files are
stored in UTM format. This causes problems when
geo-referencing the boundaries in I2K because the state
of Illinois is located in both UTM zone 15 and UTM

zone 16. The solution was to immediately translate the
UTM coordinates to latitude and longitude. Over 29%
of the time to load a SSURGO DLG file was spent in
the conversion from UTM coordinates to latitude and
longitude. Each DLG file contains the UTM zone in
the header information. ESRI Shapefile normally
contains latitude and longitudinal geo-referencing
information. No conversion was required when loading
the shapefile in I2K. A potential drawback of the ESRI
Shapefile format is that there is not a standard way to
define the projection used in for the coordinates. DLG
has a value in the header to signify if UTM or Albers
projection is used. Also, some of the projection
parameters are stored in the header of a DLG.
Shapefiles, on the other hand, do not store projection
information. This information could be stored with the
meta data for a shapefile, but it is not required. This
makes it difficult to distribute shapefiles with geo-
referencing information other than standard latitude and
longitude.

5.4 DLG and TIGER Comparisons
DLG and TIGER offer similar methods to encode
vector data. TIGER’s use of an edge with shape points
corresponds directly to DLG’s use of lines and
coordinates. Likewise, a TIGER polygon is comprised
of a series of edges, and a DLG area is made up of a
series of lines. This provides a compact, human-
readable representation of the vector data.

The two formats differ in the type of data that are
encoded. DLG format typically encodes one layer of
data in a file, such as the soil types used by SSURGO.
Other layers, such as water boundaries, are encoded in
separate files. This scheme introduces some
redundancy between the layers. Layers are unrelated to
one another, and any shared boundaries will be
specified in each layer. For example, a soil layer
encoded as a DLG may have boundaries defined along
a river. A layer containing bodies of water may share
the same boundaries, but the points will be specified
again because the soil layer is unrelated to the body of
water layer in DLG. TIGER format, on the other hand,
groups all edges together, regardless of layer. The
different metadata files are used to determine which
edges to use. This format allows for less redundancy.

Polygons are retrieved very differently by the DLG
and TIGER loaders. DLG format specifies the exact
boundaries for each polygon. A list of lines defines the
exact border of a polygon, and the lines are in the
proper sequence. Since the lines appear in the proper
sequence, the polygon can be quickly constructed after
all line retrieval. In contrary to DLG format, the
boundaries stored in TIGER format must be found
programmatically. Each edge is labeled with the
polygons that appear on the left and right of the edge.
To construct a polygon A, you must first find all edges
that border the polygon A. The edges only define the

end points of each edge, and not the order in which the
edges should be connected. So the boundary of
polygon A must be constructed programmatically by
comparing the end points of each edge. Thus, the
TIGER polygon construction is far more complex and
time-consuming than the DLG polygon construction.

5.5 TIGER and LLS Comparisons
One can derive TIGER and LLS comparisons from the
description provided in Sections 2, 3 and 4 that
compare DLG and LLS, and TIGER and DLG formats.
Since the experimental tradeoff evaluations of TIGER
and LLS are summarized in Table 2, we devoted this
section to the implementation of TIGER to LLS
conversion.

The underlying principle of the conversion process
from TIGER/Line files to ESRI Shapefiles could be
compared to sorting points according to the order of
boundary edges. This is illustrated in Figure 4. In
reality, the conversion process begins by loading the
raw TIGER/Line files into 2-D table-like data structures
by making use of manually developed meta data files.
Since the TIGER/Line files are fixed-width encoded
flat files, meta data is necessary to define the indices of
the first and last characters for each attribute in the lines
of the flat file. This information, the attributes’ names,
and their type (integer, floating point number, string,
etc) come from meta data files provided by the Census
Bureau. The final piece of information contained in the
meta data file is a “Remove Column” field, which
dictates whether or not the attribute will be dropped
from the table as it is read in. Attributes that are not
used during the processing are removed early on for the
sake of memory efficiency. The meta information for
each Record Type is stored in a comma-separated-value
(csv) file, which can easily be parsed into a table object,
then accessed in that form by the routine that parses the
main data file.

Once the TIGER/Line data are in the form of tables,
they are streamed through a complex system of
procedures, including conversion to several
intermediate data structures, before being inserted into
Hierarchical Boundary Objects (HBoundary) [7]. Each
HBoundary represents one type of region (county,
census track, etc) for a single state. It can also be
viewed as one master list of boundary points that all
boundaries reference by pointers. The RAM memory
savings of HBoundary versus ShapeObject for each
point that is shared by two counties, two census tracts,
and two block group boundaries is 30 bytes. For the
state of Illinois, this optimization translated into a 38%
reduction in memory usage (16.45 MB versus 26.64
MB).

Figure 6: The TIGER/Line to ESRI Shapefiles
conversion of boundary representation can be viewed as
a transformation from an unordered set of points to a
clock-wise ordered set of points.

Finally, the HBoundary object is converted into LLS
format by constructing all polygons. The resulting LLS
format file was tested by loading it into the commercial
ArcExplorer software package [3]. For our
experimental tradeoff evaluations, we extracted only a
selected subset of Census boundary records from the
Census 2000 TIGER/Line files. Thus, it is hard to
evaluate loading RAM requirements for TIGER and
other two formats since the HBoundary object contains
all hierarchical boundaries and their associated
information, while the converted LLS file contains only
four types of boundaries (counties, ZCTAs, blocks and
tracts) and extracted information about region names,
neighboring regions to each boundary, and an internal
point of each region.

6 Summary
In this paper we have investigated the storage and
retrieval efficiency tradeoffs between the ESRI
Shapefile (LLS), DLG, and TIGER formats. LLS files
will provide the fastest method for boundary retrieval
(40 times faster than TIGER and 2.5 times faster than
DLG). All boundaries are stored in a binary format for
quick retrieval. This speed comes at the price of file
size. Each boundary in a LLS file contains all the
points that make up the boundary. This introduces
storage redundancy (between 70% and 180%
redundancy in our experiments) since boundaries can
be shared between different polygons. Digital Line
Graphs reduce the amount of redundant data. This
reduction is tempered by the need for more retrieval
processing per boundary. The TIGER format further
reduces the amount of data. TIGER format is the most
compact representation that comes at the cost of the
highest boundary retrieval requirements. Detailed
information about these results can be found in
Reference [12].

Our goal was to evaluate numerically the trade-

offs between storage and boundary retrieval
requirements for the three vector files. The
measurements about “Total Load Time”, “Load RAM
Required” and “Hard Disk” as a function of “Number
of Loaded/Unique Nodes” were used as our metric to
demonstrate the trade-offs. Our measurements support
the existing knowledge about the choice of a file format
depending on the data content that is mapped to
boundary overlaps. However, there are other metrics
that might affect institutional decisions as well, and
were not included in this study. We could enumerate a
few metrics, such as (1) a cost of storage media and
RAM, (2) a cost of software development to support
complex file formats, (3) a preservation of storage
media, (4) an availability of software tools for ingesting
and processing certain file formats, or (5) an open
source implementation of software tools that would
allow tracking discrepancies in file format
interpretation (loading) and replication (writing). While
we did not quantify the additional possible metrics, we
have made the following observations. First, numerous
software tools support the ESRI Shapefile format
whereas not many tools work with Digital Line Graphs
or TIGER files. Second, the amount of time we have
spent implementing the LLS, DLG and TIGER file
format loaders was increasing in the order of the listed
file formats. We hypothesize that the increase is almost
linear but it becomes quadratic as the file format is too
complex to track and eliminate software bugs. Finally,
the cost of storage and RAM has been rapidly
decreasing over the last decade. We could not foresee
the future technological advancements of storage media
that would favor one file format over another.

7 Future Directions
One would like to incorporate the effects of computer
clusters and mass storage systems on the storage versus
boundary retrieval efficiency tradeoff evaluations for
LLS, TIGER and DLG data structures. Our tradeoff
study thus far has been in an isolated workstation
environment. The results of our tradeoff study could
differ when a very large cluster or mass storage system
is used. We have identified several directions that
further research could take.

First, investigate the effect of computer clusters on
boundary retrieval efficiency assuming distributed or
centralized locations of a large number of boundary
files. The benefit of using a computer cluster would
come from parallelization of loading and boundary
reconstruction tasks.

Second, empirical results and theoretical analyses
from our research thus far have shown file size
(computer storage size) to be related to the amount of
overlap between boundaries. The usage of a mass
storage system will add to the time needed to load bytes
from a file.

Another component of mass storage systems and

computer cluster environments is the Input/Output (I/O)
bandwidth and I/O schemes. While the relationship
between I/O bandwidth and boundary retrieval
efficiency is straightforward (linear dependency), there
are a few questions to ask about I/O schemes. For
instance, can more efficient I/O schemes be used to
improve boundary retrieval? Would message passing
interface input/output (MPI-IO) have any effect? What
would be the bottlenecks?

Finally, our ultimate goal is to understand multiple
effects of electronic vector files on the archival process.
We could mention just a few effects, such as vector file
format, data organization and representation,
algorithmic parallelization, scalability of vector file
loading in terms file size and centralized or distributed
file locations, software re-usability, computer platform
dependency, computer cluster environments, I/O
bandwidth and I/O schemes, and mass storage systems.

Acknowledgements

This research was supported by a National Archive and
Records Administration (NARA) supplement to NSF
PACI cooperative agreement CA #SCI-9619019. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the National Science Foundation, the
National Archives and Records Administration, or the
U.S. government.

References

[1] Campbell, James B. Introduction to Remote
Sensing, Second Edition. The Guilford Press,
New York. 1996.

[2] Miller, Catherine L. TIGER/Line Files Technical
Documentation. UA 2000. U.S. Department of
Commerce, Geography Division, U.S. Census
Bureau.
http://www.census.gov/geo/www/TIGER/TIGERu
a/ua2ktgr.pdf

[3] ArcExplorer, ESRI web site: http://www.esri.com
[4] ESRI Shape file, File Format Specification,

http://www.esri.com/library/whitepapers/pdfs/shap
efile.pdf

[5] Bajcsy P. et. al., “Image To Knowledge”,
documentation at web site:
http://alg.ncsa.uiuc.edu/tools/docs/i2k/manual/inde
x.html.

[6] Alumbaugh T.J. and Bajcsy P.,”Georeferencing
Maps with Contours in I2K”, ALG NCSA
technical report, alg02-001, October 11 2002.

[7] Groves P., S. Saha and P. Bajcsy, “Boundary
Information Storage, Retrieval, Georeferencing and
Visualization,” Technical Report NCSA-ALG-03-
0001, February 2003.

[8] “Data To Knowledge”, software documentation at

web site:
http://alg.ncsa.uiuc.edu/tools/docs/d2k/manual/inde
x.html

[9] “Digital Line Graph References” prepared by the
Office of Information Technology,
http://www.oit.ohio.gov/SDD/ESS/Gis/DigitalLine
Graphs.aspx#Documentation

[10] Digital Line Graphs from 1:24,000-Scale Maps
Data Users Guide 1,
http://www.geodata.gis.state.oh.us/dlg/usrguide/usr
guide.htm

[11] “US GeoData, Digital Line Graphs” prepared by
the U.S. Department of the Interior and the U.S.
Geological Survey,
http://www.usgsquads.com/downloads/factsheets/u
sgs_dlg.pdf

[12] Clutter D. and P.Bajcsy. “Storage and Retrieval
Efficiency Evaluations of Boundary Data
Representations for LLS, TIGER and DLG Data
Structures,” Technical Report NCSA-ALG-04-
0007, October 2004.

