
 

Tradeoff Studies about Storage and Retrieval Efficiency of Boundary Data 
Representations for LLS, TIGER and DLG Data Structures  

1 Introduction 

Boundary information is viewed as an efficient 
representation of image documents describing spatial 
regions and is important for document image 
management and information retrieval. Boundary 
information represents one type of vector information 
[1, Chapter 15]. Boundaries (or contours or outlines) 
are mathematically described as convex or non-convex 
polygons. One boundary can be formed by a set of 
polygons, for instance, a donut shape boundary. Each 
polygon consists of an ordered set of points or vertices. 
In most GIS applications, points are georeferenced so 
that boundary information can be integrated with raster 
information. GIS examples of boundary information 
would be parcels, eco-regions, watersheds, soil regions, 
counties, Census tracts or U.S. postal zip codes. The 
goal of our work is to study the impacts of choosing 
boundary information representation on document 
image management and informational retrieval, as well 
as improve our understanding of the processing noise 
introduced during representation conversions.  

In general, boundaries can be spatially related or can 
be spatially independent. The spatially related 
boundaries can be either partially overlapping or totally 
overlapping, such as, one contour being a subset of 
another set of boundaries. For example, watershed and 
U.S. postal zip codes boundaries are spatially 
independent while the U.S. Census Bureau tracts and 
blocks are spatially dependent in such a way that every 
tract is formed by a set of blocks.  

Given the variety of boundary information, 
researchers have developed numerous file formats for 
storing boundary information. These file formats are 
designated in general for storing any vector data. 
Vector data contain points, lines, arcs, polygons or any 
combinations of these elements. Any vector data 
element can be represented in a reference domain 
defined by a latitude/longitude, UTM or pixel 
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Abstract 

We present our theoretical comparisons and
experimental evaluations of three boundary data
representations in terms of storage and information
retrieval efficiency. We focus on three boundary data
representations, such as, location list data structure
(LLS), digital line graphs (DLGs) and topologically
integrated geographic encoding and referencing
(TIGER) data organizations. These three boundary
data representations are used frequently in the GIS
domain, and are known as ESRI Shapefiles (LLS), the 
SSURGO DLG-3 soil files (DLG), and the U.S. Census 
Bureau 2000 TIGER/Line files (TIGER). Boundary
information is viewed as an efficient representation of 
image documents describing spatial regions. The goal 
of our work is to study the impacts of choosing
boundary information representation on document
image management and information retrieval, as well 
as to improve our understanding of the processing
noise introduced during representation conversions.  

Our storage and retrieval efficiency tradeoff
evaluations are based on load time, computer memory, 
and hard disk space requirements. The experimental
measurements are obtained with test data sets derived 
from the SSURGO DLG-3 soil files and the U.S. Census 
Bureau 2000 TIGER/Line files. Based on our
experiments, we concluded that LLS files will provide 
the fastest boundary retrieval (40 times faster than
TIGER and 2.5 times faster than DLG) at the price of 
file size (storage redundancy for LLS files is between 
70% and 180% in our experiments). DLG format offers 
a smaller file size, but is less efficient for boundary
retrieval. TIGER format also offers a compact physical 
representation, at the cost of more processing for
boundary retrievals. These findings provide
quantitative support for institutional document image
management decisions.  
 

 
 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 



coordinate system. The challenge in storing vector data 
is to organize the data such that the positions and 
geographic meanings of vector data elements are 
efficiently stored and easily extracted.  

Among all vector data representations in files, the 
following data structures have been used frequently: 
location list data structure (LLS), point dictionary 
structure (PDS), dual independent map encoding 
structure (DIME), chain file structure (CFS), digital line 
graphs (DLGs) and topologically integrated geographic 
encoding and referencing (TIGER) files. For detailed 
description of each data structure we refer a reader to 
[1]. 

The motivation of our work came from the fact that 
while boundary data types are preferred over raster data 
types when it comes to storing boundary information, 
there are multiple memory storage schemes for 
boundary information, as listed in the previous 
paragraph. However, choosing the storage scheme that 
minimizes memory requirements might have a 
detrimental impact on boundary information retrieval 
efficiency. Thus, our objective is to evaluate 
quantitatively the tradeoffs between storage and 
retrieval efficiency of multiple boundary data 
representations for LLS, TIGER and DLG data 
structures. The outcomes of our evaluations are useful 
for (a) institutional decisions about archiving and 
retrieving geospatial boundary information, and (b) 
custom applications that perform processing of large 
size, geospatial boundary data sets. 

In this work, we evaluate three boundary data 
representations for efficient boundary information 
storage and retrieval. These three data representations 
include (1) Census 2000 TIGER/Line files defined by 
the U.S. Census Bureau and saved in topologically 
integrated geographic encoding and referencing 
(TIGER) data structures, (2) shapefiles defined by the 
Environmental Systems Research Institute (ESRI) and 
stored in location list data structure (LLS) data 
structures, and (3) SSURGO DLG-3 soil boundaries 
prepared by the United States Geological Survey 
(USGS) and stored in digital line graphs (DLGs) data 
structures. We overview the three data file formats first. 
Next, we present our experimental results, and pair-
wise analysis of experimental results.  Finally, we 
summarize our work and add a few observations about 
other possible trade-off metrics that might be 
considered for making institutional decisions. 
 

2 SSURGO DLG-3 Soil Files  
The Soil Survey Geographic (SSURGO) Digital Line 

Graphs (DLG) files provide geographical information 
on the boundaries of soil types [9], [10], [11]. The 
SSURGO data sets provide the highest spatial 
resolution of soil type information among the three soil 

geographic data bases, such as, the Soil Survey 
Geographic (SSURGO) data base, the State Soil 
Geographic (STATSGO) data base, and the National 
Soil Geographic (NATSGO) data base.  

 

2.1 File Format Description 
DLG File Structure: The DLG file structure is 
designed to support all categories of spatial data that 
can be represented on a map.  Three distinct types of 
DLG are defined.  Large-scale DLG data is digitized 
from 1:24,000-scale USGS topographic quadrangles 
(SSURGO).  Intermediate-scale DLG data is digitized 
from 1:100,000-scale USGS quadrangles (STATSGO).  
Small-scale DLG data is digitized from 1:2,000,000-
scale sectional maps (NATSGO).  Furthermore, three 
levels of DLG data were defined in terms of the number 
of attributes.  It was found that the widest user 
community would be served by DLG Level 3 (DLG-3) 
data, which allows for the highest resolution 
(SSURGO) and highest number of attributes to be 
encoded (Level 3). The lesser levels of DLG encoding 
are unused.  DLG-3 encodes attributes using two codes: 
a major code and a minor code.  Similar attributes share 
a major code.  The SSURGO DLG-3 soil database uses 
both the major code and minor code to encode the 
primary key into a relational database to further 
describe an area. 

We gathered the SSURGO DLG-3 files for a few 
counties in Illinois from 
http://www.ncgc.nrcs.usda.gov/branch/ssb/products/
ssurgo/data/index.html. There are two files for each 
county, such as, dlg.zip (digital line graph or DLG) and 
tab.zip (ASCII attribute data available in Microsoft 
Access 97 or later template database). The files contain 
soil boundaries of 18,000 soil series recognized in the 
United States. For the integration purposes, we have 
explored the following information from the DLG-3 
documentation: (a) file naming convention, (b) spatial 
resolution, (c) spatial accuracy, (d) geographic 
coordinate system and (e) storage format. In terms of 
file naming convention, the dlg.zip file would contain 
files with the following suffixes:  

af - soil polygon DLG-3 file,  
aa - soil polygon attribute file,  
sf - special soil point and line DLG-3 file, and  
sa - special soil point and line attribute file.  

Regarding spatial resolution, soil survey is mapped at a 
scale ranging from 1:12,000 to 1:63,360. The SSURGO 
soil boundaries meet the accuracy standards for the 
USGS 7.5-minute topographic quadrangles or the 
1:12,000 or 1:24,000 orthophotoquads. Finally, the 
storage format is Digital Line Graph optional format 
with the attribute table data archived in ASCII table or 
INFORMIX table format. 

DLG Georeferencing Information: In terms of a 
geographic coordinate system, coordinates are derived 
from the North American Datum of 1983 reference 



system that is based upon the Geodetic Reference 
System of 1980. DLG data are recorded in either the 
Universal Transverse Mercator (UTM) system or are 
projected using the Albers Equal-Area Conic 
projection. SSURGO DLG-3 data are normally reported 
in the UTM system.  STATSGO DLG data are reported 
using the Albers Equal-Area Conic projection. 

DLG Data Description: DLG data are reported as 
nodes, lines, and areas.  Lines are composed of a series 
of nodes, and areas are composed of lists of lines (or 
optionally nodes).  The composition of an area or a line 
can be encoded either as a list of the nodes that make up 
the element, or as a list of points.  Due to this 
hierarchical structure, each element must be encoded 
with a unique identifier. 

A node is a coordinate on a map.  Each node has an 
Easting value and a Northing value in the UTM 
coordinate system.  Nodes define the points of each line 
and are encoded with (1) a unique identifier and (2) the 
coordinates that the node represents.  Nodes can also be 
encoded with attributes, if desired.  Additionally, the 
DLG format specification allows for a list of all lines 
that begin and end at a node to be encoded in the record 
for a node.  This is redundant information, however, for 
it is reflected in the line records as well.   

Lines are a series of nodes.  Each line is encoded 
with a unique identifier, as well as its starting node and 
ending node.  The coordinates that a line follows are 
also listed.  In addition, a line can be encoded with 
attributes. 

An area is an enclosed section.  Areas can be encoded 
as either a sequence of lines or a sequence of nodes.  
When encoded as a sequence of lines, the area will 
contain a list of the lines that the boundary of the area 
follows.  This list contains the unique identifier for each 
line; negative values signify that the points in the line 
should be reversed.  Islands within an area are delimited 
by a ‘0’ in the list of lines.  Areas are specified in a 
clockwise direction around the perimeter of the area, 
and islands are specified in a counter-clockwise 
direction.  In addition, an area can be encoded with 
major and minor code pairs.  When encoded as a 
sequence of nodes, the area will contain a list of the 
nodes make up the boundary of the area. 

Software Development for SSURGO DLG-3 Files: 
First, we implemented a loader for SSURGO DLG-3 
files and added it to the list of other GIS files supported 
by the NCSA I2K software package [5]. Next, we 
extended our 2D visualization to support visualization 
SSURGO DLG-3 files. We can visualize multiple 
georeferenced vector data structures (boundaries and 
sets of points) simultaneously. Third, we develop a 
conversion function from SSURGO DLG-3 data 
structure to ESRI Shapefile (LLS) data structure that 
was needed for tradeoff comparison purposes. 

The details of boundary information retrieval from 
DLG-3 file format can be described as follows. The 

DLG file format defines objects using a hierarchical 
structure. The lowest objects in the hierarchy must be 
retrieved prior to higher objects in the hierarchy.  Thus, 
in order to retrieve an area, all lines that make up the 
area’s boundary must be retrieved beforehand.  
Therefore, the DLG-3 loader in I2K will read all the 
defined lines first.  The lines are kept in a lookup table, 
and indexed by their unique identifier for later use.  The 
size of this structure is directly proportional to the 
number of lines.   

Next, the areas are retrieved by populating I2K 
defined data structures for boundary information 
denoted a ShapeObject. In the ShapeObject, an area has 
a list of the coordinates that make up its boundary.  This 
list is dynamically constructed when reading an area.  
Areas that share a boundary will have copies of the 
common coordinates.  Once all areas have been read 
and processed, the lookup table containing the lines can 
be safely discarded.  Finally, the coordinates for the 
areas are copied into a ShapeObject. 

 

2.2 Theoretical Evaluation 
Memory requirements: The DLG-3 optional format 
used in SSURGO soil databases provides a compact 
physical representation of the boundaries of soil types 
over a geographic area.  There is little redundancy in a 
DLG-3 file.  Each area is a list of lines that do not 
cross.  The lines must share the same endpoints in order 
to fully define an area.  Thus, the only redundant 
information is the endpoints of each line.  The points of 
adjacent polygons will be specified only once; in a line, 
or series of lines.  The boundary between adjacent, non-
overlapping polygons is represented as the same series 
of line identifiers in the file.  In addition, representing 
all data in a fixed-length ASCII form makes for smaller, 
highly compressible files.  Abundant white space exists 
in DLG-3 files to maintain the fixed length.  Typical 
compression algorithms will compress a series of 
identical characters efficiently.  Thus, when a DLG-3 
file is subject to compression, the white space will 
compress well. 
Boundary information retrieval requirements: The 
boundary information retrieval from DLG-3 file format 
can require significant processing resources. All 
boundary coordinates are stored as ASCII characters in 
a DLG file.  In order to use the polygons specified in a 
file, each coordinate must be converted into a native 
numeric value.  This conversion can be quite costly, 
and takes approximately 27% of the time to load 
SSURGO DLG-3 files in I2K. 

3 Census 2000 TIGER/Line Files  
The Census 2000 TIGER/Line Files provide 
geographical information on the boundaries of counties, 
zip codes, voting districts, and a geographic hierarchy 
of census relevant territories, e.g., census tracts that are 
composed of block groups, which are in turn composed 



of blocks. It also contains information on roads, rivers, 
landmarks, airports, etc, including both 
latitude/longitude coordinates and corresponding 
addresses [2]. A detailed digital map of the United 
States, including the ability to look up addresses, could 
therefore be created through processing of the 
TIGER/Line files.  
 

3.1 File Format Description 
Because the density of data in the TIGER/Line files 
comes at the price of a complex encoding, extracting all 
available information from TIGER/Line files is a major 
task. In this work, our focus is primarily on extracting 
boundary information of regions and hence other 
available information in TIGER/Line files is not 
described here. 

TIGER/Line files are based on an elaboration of the 
chain file structure (CFS) [1], where the primary 
element of information is an edge. Each edge has a 
unique ID number (TIGER/Line ID or TLID) and is 
defined by two end points. In addition, each edge then 
has polygons associated with its left and right sides, 
which in turn are associated with a county, zip code, 
census tract, etc. The edge is also associated with a set 
of shape points, which provide the actual form an edge 
takes. The use of shape points allows for fewer 
polygons to be stored.  
 

 
Figure 1: Illustration of the role of shape points. 

To illustrate the role of shape points, imagine a 
winding river that is crossed by two bridges a mile 
apart, and that the river is a county boundary and 
therefore of interest to the user (see Figure 1). The 
erratic path of the river requires many points to define 
it, but the regions on either side of it do not change 
from one point to the next, only when the next bridge is 
reached. In this case, the two bridge/river intersections 
would be the end points of an edge and the exact path 
of the river would be represented as shape points. As a 
result, only one set of polygons (one on either side of 
the river) is necessary to represent the boundary 
information of many small, shape defining edges of a 
boundary. 

This kind of vector representation has significant 
advantages over other methods in terms of storage 
space. To illustrate this point, consider that many 

boundaries will share the same border edges. These 
boundaries belong to not only neighboring regions of 
the same type, but also to different kinds of regions in 
the geographic hierarchy. As a result, storing the data 
contained in the TIGER/Line files in a basic location 
list data structure (LLS) such as ESRI Shapefiles, 
where every boundary stores its own latitude/longitude 
point, would introduce a significant amount of 
redundancy to an already restrictively large data set. 

In contrast to its apparent storage efficiency, the 
TIGER vector data representation is very inefficient for 
boundary information retrieval and requires extensive 
processing.  From a retrieval standpoint, an efficient 
representation would enable direct recovery of the 
entire boundary of a region as a list of consecutive 
points. The conversion between the memory efficient 
(concise) and retrieval efficient forms of the data is 
quite laborious in terms of both software development 
and computation time. 

Another advantage of the TIGER/Line file 
representation is that each type of GIS information is 
self-contained in a subset of files. As a result users can 
process only the desired information by loading a 
selected subset of relevant files. For example, each 
primary region (county) is fully represented by a 
maximum of 17 files. Therefore, the landmark 
information is separate from the county boundary 
definition information, which is separate from the street 
address information, etc. Those files that are relevant to 
the boundary point extraction, and the attributes of 
those files that are of interest, are the following:  

• Record Type 1: Edge ID (TLID), Lat/Long of 
End Points 

• Record Type 2: TLID, Shape Points 

• Record Type I: TLID, Polygon ID Left, 
Polygon ID Right 

• Record Type S: Polygon ID, Zip Code, 
County, Census Tract, Block Group, etc. 

• Record Type P: Polygon ID, Internal Point 
(Lat/Long). 
We denote this subset of files as “Census boundary 
records”. 
 

3.2 Theoretical Evaluations 
This work extends our previous study about the 
tradeoffs between U.S. Census Bureau TIGER and 
ESRI Shapefile data representations that are 
documented in [7].  
 

4 ESRI Shapefiles  
A shapefile is a special data file format that stores non-
topological geometry and attribute information for the 
spatial features in a data set. The geometry for a feature 



is stored as a shape comprising a set of vector 
coordinates in a location list data structure (LLS). 
Shapefiles can support point, line, and area features. 
Area features are represented as closed loop polygons. 
 

4.1 File Format Description  

A shapefile must strictly conform to the ESRI  
specifications [4]. It consists of a main file, an index 
file, and a dBASE table. The main file is a direct 
access, variable-record-length file in which each record 
describes a shape with a list of its vertices. In the index 
file, each record contains the offset of the 
corresponding main file record from the beginning of 
the main file. The dBASE table contains feature 
attributes with one record per feature. The one-to-one 
relationship between geometry and attributes is based 
on record number. Attribute records in the dBASE file 
must be in the same order as records in the main file. 

All file names adhere to the ESRI Shapefile 8.3 
naming convention. The 8.3 naming convention 
restricts the name of a file to a maximum of 8 
characters, followed by a 3 letter file extension. The 
main file, the index file, and the dBASE file have the 
same prefix. The suffix for the main file is ".shp". The 
suffix for the index file is ".shx". The suffix for the 
dBASE table is ".dbf". 
Examples:  
1. main file: counties.shp 
2. index file: counties.shx 
3.DBASE table: counties.dbf 
  The implementation of shapefile loading, writing and 
visualization routines was straightforward since the I2K 
ShapeObject data structure maps directly to the 
shapefile file organization.  
 

4.2 Theoretical Evaluation  
There are numerous reasons for using ESRI Shapefiles. 
ESRI Shapefiles do not have the processing overhead of 
a topological data structure such as a TIGER file. They 
have advantages over other data sources, such as faster 
drawing speed and edit ability. ESRI Shapefiles handle 
single features that overlap or are noncontiguous. They 
also typically require more disk space but are easier to 
read and write. However, the drawbacks of ESRI 
Shapefiles are in their storage inefficiency and poor 
scalability. We will quantify these tradeoffs in the 
experimental section. 

 

5 Experimental Evaluations 
In this section, our goals are (a) to experimentally 
evaluate the tradeoffs between storage and retrieval 
efficiency, and (b) to explain the tradeoffs by 
comparing fundamental format differences. In order to 
perform experimental tradeoff evaluations, we used two 

datasets including (1) the SSURGO soil boundaries for 
Madison County, IL, stored in DLG-3 file format and 
(2) the U.S. Census Bureau boundaries of Illinois 
counties, zip codes, census block and census tracts 
stored in TIGER/Line file format. The preparation of 
these two data sets is outlined in Section 5.1. The 
results of all experiments are provided in Sections 5.2 
and include comparisons of DLG & LLS, and DLG & 
TIGER & LLS. Sections 5.3, 5.4 and 5.5 explain the 
pair-wise format comparisons based on the 
experimental results. 
 

5.1 Data Preparation 
It is apparent that the experimental evaluations will 
depend on the size of test data. Ideally, one would like 
to show results as a function of input file size. 
However, the practical difficulty arises when one is 
looking for those test data sets that contain identical 
boundary information but are represented by LLS, 
TIGER and DLG files. We were not able to find such 
files.  

We explored the possibility of finding software tools 
that would convert vector files from one file format to 
another so that we could create multiple test files with 
identical boundary information stored in LLS, TIGER 
and DLG formats. We have concluded that while LLS 
formats (ESRI Shapefiles) are supported by most GIS 
software packages, there is a very limited support for 
DLG and TIGER file formats. This corresponds to our 
assessment of the implementation complexity to 
support loading of TIGER, DLG and LLS formats in 
this order from the most time consuming to the least 
time consuming. The implementation effort usually 
doubles when both loading and writing routines have to 
be supported.  

Based on our findings about conversion tools and the 
availability of GIS software packages at our institution, 
we created data sets by (1) implementing TIGER to 
LLS, and DLG to LLS conversions, and (2) using 
ArcToolBox for LLS to DLG conversion. We created 
several test data sets that are described next. 

In the first experimental tradeoff evaluation, we used 
a file pair consisting of the original DLG file (SSURGO 
soil boundaries) and the LLS file converted using I2K. 
This file pair is denoted as the test data set #1. 

In the second experimental tradeoff evaluation, we 
prepared a triplet of files consisting of (a) the original 
TIGER files for the state of Illinois, (b) the LLS files 
obtained by extracting the U.S. Census Bureau 
boundaries of counties, zip codes, census block and 
census tracts from the TIGER files and converting them 
by using our software implementation, and (c) the DLG 
file converted from the already obtained LLS file using 
ArcToolBox. This triplet of files provides a test data set 
for fair performance evaluations in terms of “Total 
Load Time” and Load RAM Required” parameters. 
However, this test data set cannot be used for 



performance evaluations in terms of “Hard Disk” 
because the TIGER files include all boundary types 
(including voting districts, and so on), of which four 
were extracted to LLS and DLG file formats. This file 
triplet is denoted as the test data set #2. 

We expanded the second experimental tradeoff 
evaluations in Section 5.2 by partitioning the test data 
set #2. We used sub-sets of the original TIGER files for 
the state of Illinois in order to vary the number of 
nodes. In order to explore load time dependency on the 
number of nodes (boundary points), we selected 1, 2, 3, 
4, 10, 15, or 24 counties from the original TIGER files, 
and formed several triplets of test data sets (TIGER, 
LLS and DLG). We always chose a subset of counties 
forming geographically contiguous regions so that 
neighboring counties would have some overlap of 
boundary points. This set of file triplets is denoted as 
the test data set #3. 

 

5.2 TIGER, LLS, and DLG Tradeoff 
Evaluations 

The experimental results of our tradeoff evaluations 
between storage and retrieval efficiency are presented 
in Tables 1 and 2.  As described in the previous section, 
the test data sets #1 and #2 {(DLG, LLS) and (TIGER, 
LLS, DLG)} were formed from the original DLG and 
TIGER files by converting them into other file formats 

using Arc ToolBox and our software. Each file format 
was then read in separately, and the storage and loading 
measurements were recorded in Tables 1 and 2.  

Before explaining the experimental results by 
comparing pairs of file formats presented in Sections 2, 
3 and 4, we posed the following two questions. First, is 
there any dependency of storage on the boundary 
content? In other words, if we had a file with watershed 
and zip code boundaries, would the results be different 
from evaluating Census tracts and blocks, and how? 
Second, can we predict the total load time as a function 
of the number of polygons/nodes without exhaustive 
experimentation? Or in other words, what would be the 
dependency between boundary information retrieval 
and the number of retrieved nodes? 

Storage Dependency on Boundary Content: The 
answer to the first question is related to the amount of 
boundary overlap. Ideally, one would experiment with 
sets of boundaries that span cases from a zero overlap 
(e.g., non-adjacent county boundaries) to an 
overlapping hierarchy of polygons (census blocks, 
block groups and tracts). Our data sets represent the 
cases of partial overlap (SSURGO) and large overlap 
(TIGER) of boundaries. Thus, the experimental results 
will vary as a function of boundary content in the 
following way: the more overlapping boundaries, the 
smaller hard disk requirements for TIGER format in 

 

Table 2: Test data#2: U.S. Census Bureau 2000 TIGER/Line files for the state of Illinois (102 counties). Loading is 
constrained to block groups, zcta, census tract, and counties ((Total Load Time and Load RAM Required 
parameters). Hard Disk and Number of Nodes measurements for LLS and DLG formats contain only block groups, 
zcta, census tract, and county boundaries, whereas the same measurements for TIGER format include all types of 
boundary information for the state of Illinois. 

Total Load Time 
(s) Hard Disk (MB)  

Unzip 

Load RAM 
Required (MB) 

Zip Unzip 

Number of Nodes 

TIGER 1300.2 200 112 940 2,176,719 
LLS 12.7 37 27 47 641,955 

DLG-3 12.9 52 8 24 457,850 

 

Table 1: Test data#1: SSURGO Soil Database, Madison County, IL. Loading time includes all SSURGO soil 
boundaries. Hard disk measurements pertain to all boundaries in the original SSURGO files. 

Total Load Time 
(s) 

Hard Disk 
(MB)  

Zip Unzip 

Load 
RAM 

Required 
(MB) Zip Unzip 

Number 
of 

Nodes 

LLS 
(Shapefile)  41.36 290 65 90 2,787,490 

DLG 105.72 103.72 380 23 79 2,787,790 
 



comparison with DLG and LLS (in this order), and the 
smaller load RAM requirements for LLS format in 
comparison with DLG and TIGER.  

Our conclusion is supported by comparing the 
number of loaded nodes versus the number of unique 
nodes using the test data sets #1 and #3, and by 
inspecting the LLS files. By evaluating the ratio s of 
these two numbers (loaded nodes versus unique nodes) 
using the test data #2 (partial boundary overlap), we 
obtain s equal to 2.02 (5630800/2787490). The same 
evaluation of the ratio s using the data set #3 (large 
boundary overlap) led to an average ratio value equal to 
2.6416. The measurements using the test data set #3 
(ZCTA, Block Group (BG), Census Tract (CT), and 
County boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois 
counties) are shown in Figure 2.  

We took additional measurements to compute the 
ratio s for (a) watershed and county boundaries (s = 
84,601/47,636=1.776), and (b) watershed and ZCTAs 
boundaries (s=344,533/201,767=1.708). We observed 
that approximately 70% of the points in both (a) and (b) 
are shared between multiple boundaries. Thus, the 
inefficiency of LLS format due to the duplicate points 
of neighboring boundaries would not decrease below 
s=1.7 for the test data. 

LLS File Format

y = 2.6416x + 2281.2
R2 = 1
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Figure 2: Storage efficiency measurements of LLS files 
using the test data set #3 (Hierarchical boundary 
content).  The points correspond to evaluations for data 
sets with boundaries for 1, 2, 3, 4, 10, 15, and 24 
Illinois counties.  

Boundary Information Retrieval Dependency on 
Number of Nodes: In order to answer the second 
question about the relationship between a load time and 
a number of nodes, we divided the Total Load Time 
into four components: t1, t2, t3 and t4 (see Equation 
below and Figure 3). The first component t1 
corresponds to the time to construct polygons from an 
ordered list of edges. The second component t2 is for the 
time to create an ordered list of edges from an 
unordered set of edges. The third component t3 
represents the time to convert ASCII characters to 
numeric type values. The last component t4 is the time 

to load any sequence of bytes (ASCII characters or 
binary values) from a file. We introduce these time 
components based on our understanding of the three 
vector file formats.  
 

1 2 3 4Total Load Time t t t t= + + +    
    (1) 

The zero and non-zero time components are 
summarized for each file format in Table 3. The total 
load time as a function of the number of nodes can be 
predicted by knowing that the time components t1, t2, t3 
and t4 are linear with the increasing number of nodes. 
The quadratic dependency of the time component t2 
(creation of ordered list of edges) as a function of the 
increasing number of nodes is avoided by the fact that 
the unordered edges are grouped by counties rather than 
by states. Based on our empirical observations, 

1 2 3t t t< < for a fixed number of nodes, which leads to 
superior total load time for LLS format in comparison 
with DLG and TIGER formats (in this order). Our 
theoretical predicted Total Load Time as a function of 
the number of nodes is shown in Figure 3 and is 
independent of test data sets (addressed as the question 
number 1 above). 
 

Table 3: Total Load Time decomposition. 

Total Load 
Time=Sum(ti) 

t1 t2 t3 t4 

LLS X 0 0 X 
DLG X 0 X X 

TIGER X X X X 
 
 
 

 
 

Figure 3: Total Load Time decomposition for TIGER, 
DLG and LLS file formats. 



 
Figure 4 : Theoretically predicted Total Load Time as a 
function of the number of nodes. 

  
We have obtained experimental measurements that 

support our theoretically predicted Total Load Time 
dependency on the number of nodes using the test data 
set #3.  Figure 5 shows our measurements and linear 
trends, where the points correspond to data sets with 
boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois 
counties. These supporting measurements for “Total 
Load Time” and “Load RAM Required” were 
calculated by averaging three runs to load the ZCTA, 
Block Group (BG), Census Tract (CT), and County 
boundaries for each data set. The total number of nodes 
and the number of unique nodes were measured (a) by 
counting nodes inside of our software developed for 
loading LLS and DLG files, and (b) by summing end 
points and shape points for TIGER files according to 
the accompanying TIGER documentation. While 
TIGER files do not contain any duplicate points, LLS 
duplicate points were found using a hash table in our 
software. 
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Figure 5 : Total Load Time vs. Number of Nodes for 1, 
2, 3, 4, 10, 15, and 24 counties with a best-fit line. 

 
According to Figure 5 and based on our test data set 

#3, the total loading time for TIGER files is 
approximately 40 times slower than for LLS files, and 

the total loading time for DLG files is about 2.5 times 
slower than for LLS files. We collected measurements 
for only 1, 2, 3 and 4 county aggregations in the case of 
DLG format because the data preparation is very time 
consuming. 

 

5.3 DLG and LLS Comparisons 
The DLG optional and LLS (or ESRI Shapefile) 
formats specify boundaries over an area.  Both formats 
have geographic information that allows the boundaries 
to be geo-referenced with other data sources.  The 
formats differ in how the data is structured and stored. 

The first primary difference between DLG and LLS 
is that DLG is stored in an ASCII format, while LLS is 
stored in a binary format.  DLG files are comprised of 
ASCII characters organized into fixed-length logical 
records of 80 characters.  When loading a DLG file, all 
data contained within must be converted to native data 
types.  For example, a coordinate is stored as the ASCII 
characters “4598829.0” in the file.  This must be read in 
and converted to its numeric value.  ESRI Shapefile, on 
the other hand, stores the data as a series of bytes that 
can be quickly converted to a data type.  For the 
previous example, the value “4598829.0” would be 
stored as 8 bytes that can be directly converted into a 
numeric value  However, it may be necessary to reverse 
the order of the bytes to account for the byte order 
(little or big endian).  The reading (and possible 
reversing) of bytes for a shapefile is far simpler than the 
ASCII-to-native transformation needed for DLG. 

This primary difference in representation (ASCII vs. 
binary) greatly affects the loading times of the two 
approaches.  Each entry in a DLG soil database must be 
read individually, and then converted to a numeric 
value.  This is the most time-consuming operation when 
loading the data, typically over 25% of the loading time 
of a DLG file.  Loading ESRI Shapefile, however, is 
much quicker.  It is simply reading a series of bytes 
from a file, with little conversion needed.  This 
quickness comes at the price of a larger file size for the 
ESRI Shapefile.  In an examination of one county, the 
DLG data needs approximately 79 MB of disk space 
uncompressed, 23 MB compressed.  The ESRI 
Shapefile, on the other hand, needs 90 MB of disk 
space when uncompressed, and 65 MB when 
compressed.  These results are summarized in Table 1 
and Table 2. The difference in compressed sizes 
between the two encodings is attributable to their 
physical representations.  DLG data contains fixed-
length records with white space between elements to 
maintain the fixed length.  This white space is 
insignificant and can be easily compressed. On the 
other hand, all binary data in an ESRI Shapefile are 
significant and cannot be easily compressed. 

The second difference between DLG and LLS is the 
way how the data in a file are structured.  DLG format 
uses nodes, lines, and areas to define its polygons.  In 



each of the SSURGO DLG datasets examined so far, 
nodes have not been used to define lines or areas.  The 
lines are a series of coordinate values, and the areas 
have a list of the lines that make up the area. On the 
other hand, LLS format lists the bounding box and the 
points for each boundary contained within it.  DLG 
format makes more efficient usage of space; areas that 
share lines will both reference the same line, while in a 
shapefile, each coordinate, including coordinates shared 
between different boundaries, is explicitly listed.  In 
addition, this difference makes it necessary to first read 
all the lines in a DLG file before reading in the areas, 
because the areas are made up of a list of the lines.  The 
lines have to be kept in a lookup table, and areas cannot 
be fully processed until all lines have been read. 

The consequence of the second difference between 
DLG and LLS is that different data structures have to 
be used when loading these files.  Our goal is to have 
one ShapeObject that contains all the polygons in a soil 
database.  DLG format gives no hint as to how many 
points will be needed to store all the polygons in the 
DLG file. Furthermore, it does not give the bounding 
box for each polygon. In contrast, ESRI Shapefile 
stores these values so that it is possible (a) to pre-
compute the space requirements needed and (b) to 
allocate arrays to hold the data when loading a 
Shapefile.  With DLG, however, it would only be 
possible to pre-compute the sizes by reading in all data 
files twice. One time to determine the sizes, and one 
time to actually read in the data.  In addition, the 
bounding box for each polygon is not stored in DLG, 
and must be found while reading in the coordinates of 
each area.  This requires comparisons for each 
coordinate to find the bounding box. In our 
implementation, expandable arrays (or vectors) were 
used so that the files only had to be read in once.  Then, 
once fully read, the data are copied into an array in the 
ShapeObject, of the exact size needed.  The problem 
with this approach is that when the copy is made, two 
arrays must exist in memory.  The first will be the array 
that contains the vector data.  The second will be the 
new ShapeObject array to copy the contents of the 
vector into.  This causes the memory requirements of 
DLG-3 files to balloon to twice the total necessary size 
in the worst case, when copying all the individual 
points of all the polygons into one ShapeObject. 

The third difference between DLG and LLS is 
related to georeferencing information. SSURGO DLG 
files are stored as quarter-quadrangles.  Each 
quadrangle represents 7.5 minutes of a degree of 
longitude and latitude.  It is necessary to load 64 
individual files to represent a one degree block.  ESRI 
Shapefile does not need to be represented this way.  
However, Shapefiles could be stored in this way, if 
desired.  All coordinates in SSURGO DLG files are 
stored in UTM format.  This causes problems when 
geo-referencing the boundaries in I2K because the state 
of Illinois is located in both UTM zone 15 and UTM 

zone 16.  The solution was to immediately translate the 
UTM coordinates to latitude and longitude.  Over 29% 
of the time to load a SSURGO DLG file was spent in 
the conversion from UTM coordinates to latitude and 
longitude.  Each DLG file contains the UTM zone in 
the header information.  ESRI Shapefile normally 
contains latitude and longitudinal geo-referencing 
information.  No conversion was required when loading 
the shapefile in I2K.  A potential drawback of the ESRI 
Shapefile format is that there is not a standard way to 
define the projection used in for the coordinates.  DLG 
has a value in the header to signify if UTM or Albers 
projection is used.  Also, some of the projection 
parameters are stored in the header of a DLG.  
Shapefiles, on the other hand, do not store projection 
information.  This information could be stored with the 
meta data for a shapefile, but it is not required.  This 
makes it difficult to distribute shapefiles with geo-
referencing information other than standard latitude and 
longitude. 

 

5.4 DLG and TIGER Comparisons 
DLG and TIGER offer similar methods to encode 
vector data.  TIGER’s use of an edge with shape points 
corresponds directly to DLG’s use of lines and 
coordinates.  Likewise, a TIGER polygon is comprised 
of a series of edges, and a DLG area is made up of a 
series of lines.  This provides a compact, human-
readable representation of the vector data.    

The two formats differ in the type of data that are 
encoded.  DLG format typically encodes one layer of 
data in a file, such as the soil types used by SSURGO.  
Other layers, such as water boundaries, are encoded in 
separate files.  This scheme introduces some 
redundancy between the layers.  Layers are unrelated to 
one another, and any shared boundaries will be 
specified in each layer.  For example, a soil layer 
encoded as a DLG may have boundaries defined along 
a river.  A layer containing bodies of water may share 
the same boundaries, but the points will be specified 
again because the soil layer is unrelated to the body of 
water layer in DLG.  TIGER format, on the other hand, 
groups all edges together, regardless of layer.  The 
different metadata files are used to determine which 
edges to use.  This format allows for less redundancy. 

Polygons are retrieved very differently by the DLG 
and TIGER loaders.  DLG format specifies the exact 
boundaries for each polygon.  A list of lines defines the 
exact border of a polygon, and the lines are in the 
proper sequence.  Since the lines appear in the proper 
sequence, the polygon can be quickly constructed after 
all line retrieval. In contrary to DLG format, the 
boundaries stored in TIGER format must be found 
programmatically.  Each edge is labeled with the 
polygons that appear on the left and right of the edge.  
To construct a polygon A, you must first find all edges 
that border the polygon A.  The edges only define the 



end points of each edge, and not the order in which the 
edges should be connected.  So the boundary of 
polygon A must be constructed programmatically by 
comparing the end points of each edge.  Thus, the 
TIGER polygon construction is far more complex and 
time-consuming than the DLG polygon construction. 

 

5.5 TIGER and LLS Comparisons 
One can derive TIGER and LLS comparisons from the 
description provided in Sections 2, 3 and 4 that 
compare DLG and LLS, and TIGER and DLG formats. 
Since the experimental tradeoff evaluations of TIGER 
and LLS are summarized in Table 2, we devoted this 
section to the implementation of TIGER to LLS 
conversion.  

The underlying principle of the conversion process 
from TIGER/Line files to ESRI Shapefiles could be 
compared to sorting points according to the order of 
boundary edges. This is illustrated in Figure 4. In 
reality, the conversion process begins by loading the 
raw TIGER/Line files into 2-D table-like data structures 
by making use of manually developed meta data files. 
Since the TIGER/Line files are fixed-width encoded 
flat files, meta data is necessary to define the indices of 
the first and last characters for each attribute in the lines 
of the flat file. This information, the attributes’ names, 
and their type (integer, floating point number, string, 
etc) come from meta data files provided by the Census 
Bureau. The final piece of information contained in the 
meta data file is a “Remove Column” field, which 
dictates whether or not the attribute will be dropped 
from the table as it is read in. Attributes that are not 
used during the processing are removed early on for the 
sake of memory efficiency. The meta information for 
each Record Type is stored in a comma-separated-value 
(csv) file, which can easily be parsed into a table object, 
then accessed in that form by the routine that parses the 
main data file. 

Once the TIGER/Line data are in the form of tables, 
they are streamed through a complex system of 
procedures, including conversion to several 
intermediate data structures, before being inserted into 
Hierarchical Boundary Objects (HBoundary) [7].  Each 
HBoundary represents one type of region (county, 
census track, etc) for a single state. It can also be 
viewed as one master list of boundary points that all 
boundaries reference by pointers. The RAM memory 
savings of HBoundary versus ShapeObject for each 
point that is shared by two counties, two census tracts, 
and two block group boundaries is 30 bytes. For the 
state of Illinois, this optimization translated into a 38% 
reduction in memory usage (16.45 MB versus 26.64 
MB).  
 

 
 

Figure 6: The TIGER/Line to ESRI Shapefiles 
conversion of boundary representation can be viewed as 
a transformation from an unordered set of points to a 
clock-wise ordered set of points. 

Finally, the HBoundary object is converted into LLS 
format by constructing all polygons. The resulting LLS 
format file was tested by loading it into the commercial 
ArcExplorer software package [3]. For our 
experimental tradeoff evaluations, we extracted only a 
selected subset of Census boundary records from the 
Census 2000 TIGER/Line files. Thus, it is hard to 
evaluate loading RAM requirements for TIGER and 
other two formats since the HBoundary object contains 
all hierarchical boundaries and their associated 
information, while the converted LLS file contains only 
four types of boundaries (counties, ZCTAs, blocks and 
tracts) and extracted information about region names, 
neighboring regions to each boundary, and an internal 
point of each region.  

6 Summary  
In this paper we have investigated the storage and 
retrieval efficiency tradeoffs between the ESRI 
Shapefile (LLS), DLG, and TIGER formats.  LLS files 
will provide the fastest method for boundary retrieval 
(40 times faster than TIGER and 2.5 times faster than 
DLG).  All boundaries are stored in a binary format for 
quick retrieval.  This speed comes at the price of file 
size.  Each boundary in a LLS file contains all the 
points that make up the boundary. This introduces 
storage redundancy (between 70% and 180% 
redundancy in our experiments) since boundaries can 
be shared between different polygons.  Digital Line 
Graphs reduce the amount of redundant data.  This 
reduction is tempered by the need for more retrieval 
processing per boundary.  The TIGER format further 
reduces the amount of data.  TIGER format is the most 
compact representation that comes at the cost of the 
highest boundary retrieval requirements.  Detailed 
information about these results can be found in 
Reference [12]. 

Our goal was to evaluate numerically the trade-



offs between storage and boundary retrieval 
requirements for the three vector files.  The 
measurements about “Total Load Time”, “Load RAM 
Required” and “Hard Disk” as a function of “Number 
of Loaded/Unique Nodes” were used as our metric to 
demonstrate the trade-offs. Our measurements support 
the existing knowledge about the choice of a file format 
depending on the data content that is mapped to 
boundary overlaps. However, there are other metrics 
that might affect institutional decisions as well, and 
were not included in this study. We could enumerate a 
few metrics, such as (1) a cost of storage media and 
RAM, (2) a cost of software development to support 
complex file formats, (3) a preservation of storage 
media, (4) an availability of software tools for ingesting 
and processing certain file formats, or (5) an open 
source implementation of software tools that would 
allow tracking discrepancies in file format 
interpretation (loading) and replication (writing). While 
we did not quantify the additional possible metrics, we 
have made the following observations. First, numerous 
software tools support the ESRI Shapefile format 
whereas not many tools work with Digital Line Graphs 
or TIGER files. Second, the amount of time we have 
spent implementing the LLS, DLG and TIGER file 
format loaders was increasing in the order of the listed 
file formats. We hypothesize that the increase is almost 
linear but it becomes quadratic as the file format is too 
complex to track and eliminate software bugs. Finally, 
the cost of storage and RAM has been rapidly 
decreasing over the last decade. We could not foresee 
the future technological advancements of storage media 
that would favor one file format over another. 

 

7 Future Directions  
One would like to incorporate the effects of computer 
clusters and mass storage systems on the storage versus 
boundary retrieval efficiency tradeoff evaluations for 
LLS, TIGER and DLG data structures. Our tradeoff 
study thus far has been in an isolated workstation 
environment.  The results of our tradeoff study could 
differ when a very large cluster or mass storage system 
is used.  We have identified several directions that 
further research could take. 

First, investigate the effect of computer clusters on 
boundary retrieval efficiency assuming distributed or 
centralized locations of a large number of boundary 
files. The benefit of using a computer cluster would 
come from parallelization of loading and boundary 
reconstruction tasks.   

Second, empirical results and theoretical analyses 
from our research thus far have shown file size 
(computer storage size) to be related to the amount of 
overlap between boundaries. The usage of a mass 
storage system will add to the time needed to load bytes 
from a file.   

Another component of mass storage systems and 

computer cluster environments is the Input/Output (I/O) 
bandwidth and I/O schemes. While the relationship 
between I/O bandwidth and boundary retrieval 
efficiency is straightforward (linear dependency), there 
are a few questions to ask about I/O schemes. For 
instance, can more efficient I/O schemes be used to 
improve boundary retrieval? Would message passing 
interface input/output (MPI-IO) have any effect?  What 
would be the bottlenecks? 

Finally, our ultimate goal is to understand multiple 
effects of electronic vector files on the archival process. 
We could mention just a few effects, such as vector file 
format, data organization and representation, 
algorithmic parallelization, scalability of vector file 
loading in terms file size and centralized or distributed 
file locations, software re-usability, computer platform 
dependency,  computer cluster environments, I/O 
bandwidth and I/O schemes, and mass storage systems.  
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