FOREIGN BALLISTIC MISSILE AND SPACE DEVELOPMENTS IN 1969

AID/RAB
FMSAC

FMSAC-STIR/SC/70-7
August 1970

CENTRAL INTELLIGENCE AGENCY
DIRECTORATE OF SCIENCE AND TECHNOLOGY
Foreign Missile and Space Analysis Center

Withheld under statutory authority of the Central Intelligence Agency Act of 1949 (50 U.S.C., section 403g)
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>2</td>
</tr>
<tr>
<td>Missile and space programs</td>
<td>2</td>
</tr>
<tr>
<td>Soviet ballistic missile systems</td>
<td>2</td>
</tr>
<tr>
<td>ICBM program</td>
<td>2</td>
</tr>
<tr>
<td>SS-7 ICBM</td>
<td>4</td>
</tr>
<tr>
<td>SS-8 ICBM</td>
<td>4</td>
</tr>
<tr>
<td>SS-9 ICBM</td>
<td>4</td>
</tr>
<tr>
<td>SS-11 ICBM</td>
<td>4</td>
</tr>
<tr>
<td>SS-13 ICBM</td>
<td>4</td>
</tr>
<tr>
<td>SS-15 ICBM</td>
<td>4</td>
</tr>
<tr>
<td>25X1, E.O.13526</td>
<td>5</td>
</tr>
<tr>
<td>IRBM program</td>
<td>5</td>
</tr>
<tr>
<td>SS-5 IRBM</td>
<td>5</td>
</tr>
<tr>
<td>MRBM program</td>
<td>5</td>
</tr>
<tr>
<td>SS-14 MRBM</td>
<td>5</td>
</tr>
<tr>
<td>SS-4 MRBM</td>
<td>5</td>
</tr>
<tr>
<td>SSBM program</td>
<td>6</td>
</tr>
<tr>
<td>SS-12 SSBM</td>
<td>6</td>
</tr>
<tr>
<td>SLBM program</td>
<td>6</td>
</tr>
<tr>
<td>SS-NX-5 SLBM</td>
<td>6</td>
</tr>
<tr>
<td>SS-N-6 SLBM</td>
<td>6</td>
</tr>
<tr>
<td>SS-N-5 SLBM</td>
<td>6</td>
</tr>
<tr>
<td>SS-N-4 SLBM</td>
<td>6</td>
</tr>
<tr>
<td>Soviet space programs</td>
<td>6</td>
</tr>
<tr>
<td>Manned near-space program</td>
<td>6</td>
</tr>
<tr>
<td>Unmanned lunar program</td>
<td>8</td>
</tr>
<tr>
<td>Interplanetary program</td>
<td>8</td>
</tr>
<tr>
<td>Nonrecoverable satellites</td>
<td>9</td>
</tr>
<tr>
<td>25X1, E.O.13526</td>
<td>9</td>
</tr>
<tr>
<td>Meteorological satellites</td>
<td>9</td>
</tr>
<tr>
<td>25X1, E.O.13526</td>
<td>9</td>
</tr>
<tr>
<td>Scientific satellites</td>
<td>9</td>
</tr>
<tr>
<td>25X1, E.O.13526</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>AID-1/70</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Non-Soviet space developments</td>
<td>12</td>
</tr>
<tr>
<td>European launcher development organization</td>
<td>12</td>
</tr>
<tr>
<td>Japan</td>
<td>12</td>
</tr>
<tr>
<td>Foreign payloads orbited by US</td>
<td>12</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Soviet test range firings in 1969</td>
<td>25</td>
</tr>
</tbody>
</table>

Withheld under statutory authority of the Central Intelligence Agency Act of 1949 (50 U.S.C., section 403g)
FOREIGN BALLISTIC MISSILE AND SPACE DEVELOPMENTS IN 1969

PURPOSE

To present significant developments in major foreign missile and space systems during 1969 on the basis of test range activities.

SUMMARY

The most significant development in Soviet ballistic missile weaponry during 1969 was the flight test of a long-range naval ballistic missile system which is probably intended for submarine use. Tests of this system were conducted from a naval test center to a distance of more than 3,000 nautical miles.

Other strategic missile system developments involved the continuation of existing R&D programs or newly initiated programs for currently operational systems. Work on a multiple reentry vehicle (MRV) subsystem for the SS-9 ICBM had advanced.

The operational ballistic missile systems (SS-7, SS-8, SS-9 Mods 1 and 2, the standard SS-11, and SS-13 ICBMs; SS-5 IRBM; SS-4 MRBM; SS-12 SRBM; and the SS-N-6, SS-N-5, and SS-N-4 SLBMs) were launched at a reduced rate and primarily for operational training purposes. The SS-4, the most frequently launched Soviet system, was also fired for a number of other purposes including RV R&D and ABM development.

Clearly, 1969 was a very bad year for the Soviet space program. Failures of important space ventures were prevalent.
The most favorable developments of the Soviets emerged from the manned near-space program. Two manned space operations were conducted, the first involving two manned vehicles and the second involving three manned vehicles. The main purpose of these operations probably was to develop space station techniques. The first operation was apparently entirely successful, but the success of the more complex second operation was limited because two of the vehicles failed to dock.

The unmanned lunar program included two launches but only one mission success in 1969. Zond 7, a probable precursor of a manned circumlunar flight, successfully circled the moon and was recovered in the USSR. Luna 15, launched shortly before Apollo 12, failed when it apparently crash-landed on the moon during a soft landing attempt.

The only interplanetary probes, Venus 5 and 6, did not survive to reach the venusian surface intact. However, a substantial amount of scientific information relative to the venusian atmosphere was transmitted by the probes.

In the scientific satellite program, the first two scientific satellites designated "Intercoosmos" were launched. The Intercoosmos program represents a joint scientific venture by the Soviet Bloc nations.

In the non-Soviet ballistic missile field during 1969, Communist China continued to test its MRBM. Tenuous evidence indicated the system is now being fired by troops. Thus, the missile may have been ready for deployment by the end of the year.

There were no important non-Soviet space developments in 1969. Two attempts to orbit a satellite were made, one by the European Launcher Development Organization (ELDO) at Australia's Woomera facility and the other by Japan at its Kagoshima facility.

During 1969, the U.S. successfully orbited four foreign earth satellites from U.S. test ranges. Three of them were launched from the Western Test Range (WTR) while the fourth satellite was orbited from Cape Kennedy.

The flight test program to develop a multiple re-entry vehicle (MRV) system for the SS-9 continued at a steady pace.

No completely new ICBM systems were flown in 1969. The SS-11 modification series was the only important developmental program initiated.
Soviet Space Programs

Space vehicle launches in the USSR during 1989 increased slightly over the 1988 levels. Launched at a rate roughly comparable to that of 1988, there were no major Soyuz flights in 1989. In contrast to 1988, manned and unmanned Soyuz flights in 1988 were quite numerous. The number of lunar and planetary probes launched or attempted was close to what it had been in 1988, but the planetary launch opportunities were not as plentiful.

MANNED NEAR-SPACE PROGRAM—The manned near-space program consisted of two operations: a near-space involving manned Soyuz vehicles and...

Withheld under statutory authority of the Central Intelligence Agency Act of 1949 (50 U.S.C., section 403g)
the SL-4 launch system. Soyuz-4 was launched on 14 January with a single crew member (Shatalov) and a day later, Soyuz-5 was orbited with a three-man crew (Volynov, Yeliseyev, and Khrunov). After a number of orbital corrections, the two spacecraft rendezvoused on 16 January using the automatic rendezvous system and, when they had come within television range of the USSR, were successfully docked manually. In referring to the "manual link-up," TASS described the joined vehicles as "the world's first experimental space station." During the period the vehicles were docked, two crew members (Khrunov and Yeliseyev) from Soyuz-5 left the spacecraft, spent about an hour in space carrying out a number of scientific experiments and observations, and then entered Soyuz-4. Both spacecraft were successfully deorbited and recovered after about three days—Soyuz-4 on 17 January, about 22 miles northwest of Karaganda, and Soyuz-5 on 18 January, about 100 miles southwest of Kustanay.

The second manned mission occurred in October when the most complex manned space mission ever undertaken by the USSR was attempted. Soyuz-6 with a two-man crew (Shonin and Kubasov) was launched on 11 October. Soyuz-7 with a crew consisting of Filipchenko, Volkov, and Korbatov, was launched on 12 October. Soyuz-8, carrying Shatalov and Yeliseyev, was launched on 13 October. Soyuz-6 did not carry the normal docking equipment.

On the following days there was extensive rendezvous and approach activity, with Soyuz-6 and Soyuz-8 participating as the active vehicles and Soyuz-7 as the passive one. The activity concentrated on manual approach using autonomous navigation techniques. All three spacecraft remained in orbit about five days and were recovered on 16, 17, and 18 January. The overall objective of the mission was never announced.

Luna 15, with the announced mission of "carrying out further research of the moon and near-lunar space," probably crashed on the lunar surface on 21 July when a soft landing was attempted. Zond-7 successfully circled the moon on 11 August and reentered the earth's atmosphere on the 14th. The skip-glide reentry profile, previously demonstrated by Zond-6, was used to accomplish a soft landing in the USSR.

UNMANNED LUNAR PROGRAM—The unmanned lunar program was characterized by a series of failures. The SL-12 was used ___ times during the year for launches related to the lunar program.

INTERPLANETARY PROGRAM—Two interplanetary probes, Venus 5 and 6, were successfully launched in January. The probes entered the cytheran atmosphere on 16 and 17 May, respectively. They were not intended to survive long enough to reach the surface intact.
Both were equipped with an improved radar altimeter and a smaller parachute for more rapid descent. The announced weight for Venus 5 and Venus 6 was 2,486 lb, slightly higher than the announced weight of 2,440 lb for Venus 4.

The SL-12 can probably place about 10,000 lb into an interplanetary trajectory. The SL-6, which was used on previous interplanetary missions, can place about 2,000 lb into a similar trajectory. Although the precise mission is not known, the increased payload size suggests that an orbiter/lander was intended.

Meteorological Satellites—Two meteorological satellites were successfully placed in orbit in 1989. In contrast to all previous meteorological satellites these were termed "Meteor" rather than "Cosmos", suggesting that the Soviets consider the system operational.

Scientific Satellites—Two purely scientific satellites were launched from Kapustin Yar in 1989—
Intercosmos 1 on 14 October, and Intercosmos 2 on 25 December. Intercosmos 1, with an orbital lifetime of less than three months, had a solar monitoring mission. Intercosmos 2 had a mission of ionospheric research. Although described as the first satellites developed as joint scientific ventures by the nations of the Soviet Block, the spacecraft were essentially the same as the former Cosmos scientific satellites.
Non-Soviet Space Developments

Two foreign satellite launch attempts were made. The European Launcher Development Organization (ELDO) conducted a satellite launch attempt in July while Japan made an attempt to orbit their first satellite in September. Four foreign payloads were successfully orbited by US launchers from US test ranges during 1969.

EUROPEAN LAUNCHER DEVELOPMENT ORGANIZATION—On 3 July 1969 an attempt was made by ELDO at Australia’s Woomera Weapons Research Establishment to orbit an Italian-built payload, using the Europa-I three-stage satellite launch vehicle.

Another satellite launch attempt with the Europa-I SLV was scheduled for November 1969 but was subsequently rescheduled for May 1970 from Woomera.

JAPAN—The fourth attempt in three years to orbit Japan’s first satellite occurred on 21 September 1969 at the Kagoshima Space Center.
although only possible launchings were detected, a considerable amount of activity was observed on the range during the year. For example, during the period of launch rehearsals were ob.
an apparently valid missile launch operation was detected with undetermined results. The launch may have been delayed, postponed, or cancelled at the last moment and no further launch activity was noted.
Withheld under statutory authority of the Central Intelligence Agency Act of 1949 (50 U.S.C., section 403g)
APPENDIX

NON-SOVET TEST RANGE FIRINGS IN 1969

<table>
<thead>
<tr>
<th>Country/Range</th>
<th>Date</th>
<th>Vehicle Type</th>
<th>Results</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNIST CHINA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shuang-ch'eng-tau Missile Test Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Jan</td>
<td></td>
<td>Possible MRBM</td>
<td>Undetermined</td>
<td>Launch at approximately 0800Z indicated by Comint.</td>
</tr>
<tr>
<td>28 May</td>
<td></td>
<td>Possible MRBM</td>
<td>Undetermined</td>
<td>Possible launch to mid-range impact area occurred at 2300Z, according to Comint.</td>
</tr>
<tr>
<td>6 Jun</td>
<td></td>
<td>Possible MRBM</td>
<td>Undetermined</td>
<td>Possible firing to mid-range impact area indicated by Comint.</td>
</tr>
<tr>
<td>16 Sep</td>
<td></td>
<td>Possible MRBM</td>
<td>Undetermined</td>
<td>Possible launch at 0000Z, according to Comint.</td>
</tr>
<tr>
<td>11 Oct</td>
<td></td>
<td>Possible MRBM</td>
<td>Undetermined</td>
<td>Possible launch at 1000Z indicated by Comint. Activity apparently involved a launch operation which may have been delayed, postponed, or cancelled at the last moment.</td>
</tr>
<tr>
<td>16 Nov</td>
<td></td>
<td>Possible MRBM</td>
<td>Undetermined</td>
<td></td>
</tr>
</tbody>
</table>

25X1, E.O.13526
NON-SOVIET TEST RANGE FIRINGS IN 1969* (Continued)

25X1, E.O.13526

SC 12326/70

Withheld under statutory authority of the Central Intelligence Agency Act of 1949 (50 U.S.C., section 403g)