Risk Assessment for Cultural Institutions: Fire Testing vs Computer Modeling

Frederick W. Mowrer, Ph.D., P.E.
Department of Fire Protection Engineering
University of Maryland
Introduction

- A number of codes and standards address the fire protection of cultural institutions:
 - NFPA 909
 - NFPA 914
 - Fire Protection of Historic Structures
- These documents identify two options to meet life safety and property conservation goals and objectives:
 - Prescriptive-based
 - Performance-based ... focus of this discussion
Compliance options

- **Prescriptive option**
 - Codes and standards address specific design requirements
 - Relationship between specified requirements and performance objectives is implicit (or nonexistent)
 - Easy to review and enforce

- **Performance-based option**
 - Goals and objectives are explicitly stated
 - Achievement of objectives demonstrated through engineering analysis of performance criteria
 - More difficult to review and evaluate
Performance-based design

- **NFPA 909**
 - Figure 7.1

- **Goal**
 - Conservation

- **Objective**
 - Protect artifacts

- **Performance criteria**
 - ?
“Culturally significant features, rooms, spaces, or contents shall not be exposed to instantaneous or cumulative fire effects that would cause irreversible damage.”

- 9.2.2.2 NFPA 909

How can this performance criterion be achieved and demonstrated?

- A.9.2.2.2 NFPA 909 addresses this issue
Performance criteria

- Demonstrate for each design fire scenario that
 - each space will be fully isolated from the fire before the smoke or thermal layer descends to a level where irreversible damage can occur
 - the smoke and thermal layer will not descend to a level where irreversible damage can occur in any room
 - no fire effects will reach any space beyond the room of origin

A.9.2.2.2 NFPA 909 recommendations
Performance criteria

- The recommendations in NFPA 909 (A.9.2.2.2) point toward the use of fire modeling to demonstrate compliance ...

- ... but is fire modeling currently up to this challenge?
What is fire modeling?

- A fire model is a mathematical prediction of fire growth, environmental conditions, and potential effects on structures, systems or components ...
 - (3.3.26 NFPA 909)
What is fire modeling?

- **Fire source**
 - Specified
 - Predicted

- **Smoke / heat transport**

- **Target response**
 - Conditions at target
 - Target vulnerability
Types of fire models

- Correlations
- Zone models
- CFD models
How fire models are used

- Predict fire growth / fire suppression
 - Current capabilities are limited

- Calculate conditions resulting from specified fire
 - Current capabilities are relatively good

- Both methods require specification of design fire scenarios
Design fire scenarios

- Fire Scenario (3.3.72.2 NFPA 909)
 - "A set of conditions that defines the development of fire, the spread of combustion products throughout a building or portion of a building, the reactions of people to fire, and the effects of combustion products."

- Design Fire Scenario (3.3.72.1 NFPA 909)
 - "A fire scenario used for evaluation of a proposed design."
Design fire scenarios

- Each fire scenario shall be challenging, but realistic, with respect to at least one of the following scenario specifications (9.5.2.2 NFPA 909):
 - Initial fire location
 - Early rate of growth in fire severity
 - Smoke generation
- What about fire suppression?
The role of suppression

As adapted from the SFPE performance-based design guide
The role of suppression

- The ability of current fire models to predict fire suppression is (very) limited.
- Fire models that attempt to calculate fire suppression are based on empirical relations derived from limited large-scale fire test results.

Credit: www.fire.nist.gov
The role of suppression

- Fire modelers typically specify the influence of fire suppression on a design fire scenario
 - Time of fire detection is modeled, then it is assumed the fire will be extinguished or controlled when the suppression system discharges
 - The impact of agent discharge on environmental conditions is typically ignored
 - e.g., effect of agent discharge on smoke layer stability
The role of fire testing

- Large-scale fire testing is still an essential part of fire suppression system design
 - Needed to prove suppression effectiveness for proposed configurations / designs
 - Needed to demonstrate that conservation objectives will be achieved

 - Successful suppression ≠ successful conservation
Limitations of fire testing

- Each test represents only one of many scenarios
 - Ignition source / location / fuel configuration / building geometry / ventilation ...

- Large-scale fire testing is very expensive
 - ~$50,000 per test for warehousing tests

- Conservation issues (i.e., artifact damage) are not typically assessed in fire suppression tests
 - Some exceptions
Example

- Compact mobile shelving fire research

![Diagram of mobile shelving array with dimensions and terminology]
Example

- Compact mobile shelving fire research
 - 1978 – GSA sponsored fire tests at FM
 - 1989 – NARA sponsored fire tests at UL
 - 1991 – National Archives/Library of Canada sponsored tests at NRCC
 - Current – FPRF sponsored fire tests
Summary

- Fire modeling is very useful for:
 - Parametric studies of different variables
 - What if ... the fire is twice as big?
 - Fire hazard analyses of specified scenarios
 - Estimating times for detector activation

- Fire modeling is NOT YET reliable for:
 - Predicting fire growth / flame spread
 - Predicting suppression system effectiveness
Summary

- Fire testing is still necessary to:
 - Evaluate flame spread / fire growth potential
 - Evaluate fire suppression effectiveness
 - High challenge / unique storage arrangements
 - Complex storage / ventilation conditions
 - Evaluate damage potential to artifacts
 - Thermal and nonthermal damage from smoke
 - Fire suppression agent / decomposition product effects
Summary

- Fire testing should be augmented by modeling
 - Pre-test modeling
 - Help define fire test parameters / measurements
 - Post-test modeling
 - Help understand / extend fire test results
 - Help validate the fire model

- Example
 - FPRF project on sprinkler / vent / draft curtain interactions
Risk Assessment for Cultural Institutions: Fire Testing AND Computer Modeling

Frederick W. Mowrer, Ph.D., P.E.
Department of Fire Protection Engineering
University of Maryland