NARA-Sponsored Research in Records Fire Suppression

Stephen E. Hannestad
Director, Space and Security Management Division
National Archives and Records Administration
March 21, 2002
Why does NARA conduct fire tests?

- 1973 National Personnel Records Center fire
- Records fires do not behave like commodity fires.
- Lack of National Standards intended to protect *contents*
- Technology advances
- Risk management / cost-benefit
Contact

For further information or copies of NARA-sponsored fire test reports:

Stephen E. Hannestad
Director, Space and Security Management Div
National Archives at College Park
8601 Adelphi Road,
College Park, MD 20740-6001
Stephen.Hannestad@nara.gov
Conventional Records Center Shelving Fire Tests

- 1974 Factory Mutual - three tests
- 1980 Factory Mutual - three tests
- 1999 Southwest Research Institute - one test
1974 Factory Mutual Tests

Standard 14-high shelves, standard 280°F sprinklers on 10’ x 10’ grid, 0.30 gpm per sq. ft.

- First test, no catwalk, exfoliating records
 - Smoke detection at 25 seconds
 - 8 sprinklers operated: 5 min. 11 sec. to 5 min. 52 sec.
 - 50 cubic feet destroyed
1974 Factory Mutual Tests

Standard 14-high shelves, standard 280°F sprinklers on 10’ x 10’ grid, 0.30 gpm per sq. ft.

- Second test, catwalk at 7’ - 1”, exfoliating records
 - Smoke detection at 16 seconds
 - 16 sprinklers operated: 5 min. 58 sec. to 12 min. 52 sec.
 - 240 cubic feet destroyed
1974 Factory Mutual Tests

Standard 14-high shelves, standard 280°F sprinklers on 10’ x 10’ grid, 0.30 gpm per sq. ft.

- Third test, catwalk at 7’ - 1”, no exfoliating records
 - Smoke detection at 33 seconds
 - First sprinkler operated at 19 min. 13 sec.
 - Second sprinkler operated at 19 min. 43 sec.
 - Third (final) sprinkler at 44 min. 29 sec.
- 20 cubic feet destroyed
1974 Factory Mutual Tests

Lessons Learned:

- Smoke detectors can provide meaningful early warning
- Exfoliation adds significantly to fire development
- Catwalks under exfoliating records reduce sprinkler effectiveness
- Standard sprinklers may not protect roof structures
1980 Factory Mutual Tests

Standard 14-high shelves, Large Drop 280°F sprinklers on 10’ x 10’ grid, 0.56 gpm per sq. ft. (No smoke detector data)

- First test, no catwalk, paper only
 - First - third sprinklers operated at 3 min. 32 sec.
 - Fifth (final) sprinkler operated at 3 min. 53 sec.
 - 142 cubic feet destroyed
1980 Factory Mutual Tests

Standard 14-high shelves, Large Drop 280°F sprinklers on 10’ x 10’ grid, 0.56 gpm per sq. ft. (No smoke detector data)

• Second test, no catwalk, computer tape and paper
 • First sprinkler operated at 6 min. 16 sec.
 • Fourth (final) sprinkler operated at 6 min. 34 sec.
 • 237 cubic feet destroyed
1980 Factory Mutual Tests

Standard 14-high shelves, Large Drop 280°F sprinklers on 10’ x 10’ grid, 0.56 gpm per sq. ft. (No smoke detector data)

- Third test, catwalk at 7’ - 1”, computer tape and paper
 - First sprinkler operated at 3 min. 40 sec.
 - Eighth (final) sprinkler operated at 4 min. 29 sec.
- 285 cubic feet destroyed
1980 Factory Mutual Tests

Lessons Learned:

- Plastics greatly increase speed and extent of fire development

- Large drop sprinklers offer superior roof joist protection compared to standard sprinklers
1999 SwRI Test

- 29-high shelving
- Catwalks at 16 ft 3 in and 24 ft 6 in
- 155°F QR sprinklers on 7-foot centers under catwalk
- 286°F standard sprinklers on 10’ X 10’ grid at ceiling
- Smoke detection at 1 min. 20 sec.
- Controlled by single sprinkler at 2 min. 51 sec.
- 40 cubic feet destroyed
Commodity Array
Fire Ignition at 0:04
Initial Fire Development 1:16
Growth up initial face 1:32
Fire near first catwalk, 1:46
Fire crosses aisle, 2:16
Second face involved, 2:28
Fire at catwalk level, 2:42
Just before sprinkler activates,
2:48
Sprinkler activated, 3:46
Containment begins, 4:44
Exfoliation pile
Center aisle
1999 SwRI Test

Lessons Learned:

- Effective protection can be achieved in high-shelf arrays
- 155°F QR sprinklers activate much quicker than standard sprinklers.
- Beginning salvage/overhaul earlier would have further reduced loss
The “Unplanned” Tests

- Three arson events at the Washington National Records Center, Suitland, MD
 - Real fires slower to develop
 - Real effectiveness of sprinkler systems match test results
 - Demonstrates role of training for the Fire Departments
Recommendations: Conventional Shelving Arrays*

- Suppression systems should be professionally designed to meet specific performance criteria
- Faster is better:
 - “QR” sprinklers more effective than standard response
 - Lower temperature ratings may reduce extent of water damage
 - Reduced coverage per sprinkler (100 square feet versus normal 130 square foot)
- Use smoke detection in high value collections

* Applies to new construction & major renovations only
Compact Shelving Tests

- 1978 Factory Mutual -- 3 Tests
- 1989 Underwriters Laboratories -- 2 Tests
- 1996 Underwriters Laboratories -- 2 Tests
1978 FM Tests: Compact Shelving

- Mobile (compact) shelving, 7 high, standard 280°F sprinklers on 10’ x 10’ grid, 0.30 gpm per sq. ft., solid steel partition between sections
 - First test: 8 Hollinger boxes per shelf, solid face; fire started at standard 42” aisle
 - Smoke detection at 5 min. 26 sec.
 - 3 sprinklers activated: 17 min. 30 sec. to 19 min. 46 sec.
 - 170 cubic feet destroyed
1978 FM Tests: Compact Shelving

- Mobile (compact) shelving, 7 high, standard 280°F sprinklers on 10’ x 10’ grid, 0.30 gpm per sq. ft., solid steel partition between sections
 - Second test: 8 Hollinger boxes per shelf, with occasional boxes removed; fire started in center of closed array
 - Smoke detection at 16 min. 44 sec.
 - 4 sprinklers activated: 1hr 32 min to 1 hr 39 min
 - 850 cubic feet destroyed
1978 FM Tests: Compact Shelving

- Mobile (compact) shelving, 7 high, standard 280°F sprinklers on 10’ x 10’ grid, 0.30 gpm per sq. ft., solid steel partition between sections
 - Third test: 7 Hollinger boxes per shelf, significant quantity of computer tapes added; fire started in center of closed array
 - Smoke seen at ceiling at 12 min. 45 sec.
 - 1st. sprinkler activated at 48 min; 2nd at 1 hr. 18 min; 3rd at 2 hr. 1 min.; final at 2 hr. 5 min.
 - 1460 cubic feet destroyed
1978 FM Tests: Compact Shelving

Lessons Learned:

- Standard 280°F sprinklers not effective in preventing major loss of records
- Occasional missing boxes had little effect, but loose packing the entire array increased fire severity
- Books, plastics increased fire severity
- Fire at aisle resulted in more rapid fire development, but also caused more rapid activation of sprinklers.
1990 UL Tests: Compact Shelving

- Mobile (compact) shelving, 7 high, 165°F QR sprinklers on 10’ x 10’ grid, 0.30 gpm per sq.ft.; solid steel partition between sections, vertical steel partition within row. Seven Hollinger boxes per shelf.
- Test 1: Tested new “Fire Park” mode, interior fire, similar to 1978 FM Test 3
- Test 2: Identical to 1978 FM Test 1 except for type of sprinkler used and within row steel partition, fire at aisle
1990 UL 1 vs. 1978 FM 3

1990 UL 1
- Smoke detected at 1m27s
- 3 sprinklers between 1m35s and 3m40s
- Virtually no loss

1978 FM 3
- Smoke detected at 12m45s
- 4 sprinklers between 48 min and 2h5m
- 1460 cubic feet lost
1990 UL 1 vs. 1978 FM 3

Lessons Learned:

- Combination of 165° F “QR” sprinklers and “Fire Park” extremely effective

- Solid steel top shelf cover created a water curtain that enhanced the control over both the vertical and horizontal fire spread.
1990 UL 2 vs. 1978 FM 1

<table>
<thead>
<tr>
<th>1990 UL 2</th>
<th>1978 FM 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sprinkler at 12m45s</td>
<td>3 sprinklers between 17m30s and 19m46s</td>
</tr>
<tr>
<td>Fire did not jump aisle</td>
<td>Fire jumped aisle</td>
</tr>
<tr>
<td>Max ceiling temp: 700°</td>
<td>Max ceiling temp: 1000°</td>
</tr>
<tr>
<td>Under 20 cubic feet lost</td>
<td>170 cubic feet lost</td>
</tr>
</tbody>
</table>
1990 UL 2 vs. 1978 FM 1

Lessons Learned:

• “QR” sprinkler reacted significantly sooner, controlled fire with just one sprinkler

• In-row vertical steel partition prevented horizontal spread of fire
1996 UL Tests: Compact Shelving

• Test 1 similar to 1990 Test 1
 – Both used 160° F QR sprinklers at 0.30 gpm/ft²
 – Both used “Fire Park” mode
 – 1996 Test at 8 high vs. 7 high in 1990
 – 1996 Test 1 had high concentration of plastics (42 computer tapes per shelf) on some units
1996 UL Tests: Compact Shelving

- Test 2 changed:
 - Reduced flow rate from 0.30 gpm/ft² to 0.20
 - Total plastics reduced from 8% to 5%
 - Plastic per shelf limited to 7 tapes
1996 UL 1 vs. 1990 UL 1

1996 UL 1
- Smoke detected at 1m45s
- 3 sprinklers between 4m39s and 9m30s
- Less than 100 ft³ loss

1990 UL 1
- Smoke detection at 1m27s
- 3 sprinklers between 1m35s and 3m40s
- Virtually no loss
1996 UL 1 vs. 1996 UL 2

1996 UL 1
- Smoke detected at 1m45s
- 3 sprinklers between 4m39s and 9m30s
- Less than 100 ft3 loss

1996 UL 2
- Smoke detection at 2m12s
- 4 sprinklers between 3m34s and 5m55s
- Less than 50 ft3 loss
1996 UL Tests: Compact Shelving

- Lessons Learned:
 - Adding 8th shelf did not significantly reduce effectiveness
 - Concentrations of plastics in compact shelving should be avoided
 - Reducing the flow rate did not significantly reduce effectiveness
Recommendations: Compact Shelving Systems

- Use ordinary temperature “QR” sprinklers
- Use “Fire Park” mode for large arrays
- If not practical to use “Fire Park” mode, use vertical barriers in every third row
- Always cover the top shelf with solid steel canopies.
- Limit concentration of plastics in compact shelving systems
Computer modeling, “QR”

“QR” Sprinkler Head
- Temp. rating: 165°F
- Response time: 198 sec
- Heat release at time of activation: 348 KW

Standard Sprinkler Head
- Temp. rating: 165°F
- Response time: 252 sec
- Heat release at time of activation: 695 KW

DETACH - T2, developed by NIST
Fire Test Summary

- Fire suppression is a *total system*, not just sprinklers
- The solid steel shelves are an essential component
- The NARA risk management objective of limiting loss from a single fire event to less than 300 ft3 can economically be achieved in a variety of shelving formats
- Sprinklers contain, but do not extinguish, records fires
Role of Security in Disaster Prevention

Prevention
Mitigation
Prosecution
- All of the significant real fires at NARA have been arson

- The five most recent disastrous commercial records center fires have been arson
Prevention

• Control access to the stacks
 – Locking systems
 – Intrusion Detection
 – CCTV
 – Avoid windows in stacks
 – Personnel checks
Mitigation

• Match the system to the risk management objective
 – Choice of agents
 – Responsiveness
• Monitor and supervise the system
• Compartmentalization: when everything else fails
• Recovery preparedness
Prosecution

- Who had access?
 - How do you know?
 - Access control systems
 - CCTV
 - Supervisory logs
 - Motive
Conclusion

- Establish risk management objectives
- Implement a professionally-designed total system based on performance objectives
- Risk can be managed, but it cannot be avoided.
Standards and Regulations

NFPA 232-2000: Standard for the Protection of Records
- ANSI-adopted Standard
- 2000 revision established mandatory coverage of archives and records centers
- Currently under review: see www.nfpa.org

36 CFR 1228, Subpart K: Facility Standards
- Applies only to Federal records storage
- Sets minimum standard for all Federal records