Making Sense of Environmental Data

NARA Preservation Conference 2006

James M. Reilly Image Permanence Institute Rochester Institute of Technology

Why Environmental Data?

Environment is best way to achieve and demonstrate stewardship of collections

Why Environmental Data?

To inform key institutional functions Facilities management Fiscal management Archival / curatorial

Environment-Driven Collection Decay Mechanisms

Chemical change
Biological attack
Mechanical damage

Deriving Meaning from T & RH Data

Algorithms to estimate specific decay risks
 Integrations over time

Chemical Decay (Natural Aging) Metric

TWPI (Time-Weighted Preservation Index)

 Measure of chemical change induced by heat and moisture
 Typical cause of poor performance: High summertime dew point

TWPI Scale

Poor: 1 – 45
OK: 45 – 75
Good: 75 - 100
Great: > 100

Biological Decay Metric

Mold Risk Factor (MRF)

Mechanical Decay Metrics

Measures risk due to: Moisture content of collections Too high Too low Dimensional changes as moisture content varies over time

Mechanical Decay Risk Metrics

Too dry – Min EMC Too damp – Max EMC Too much expansion and contraction – % DC Max Typical cause of poor performance: Winter dryness

Interpreting Data: Weigh the Risks According to the Nature and Importance of Collections

Archival & library materials:

 Chemical, biological
 Fine arts & rare books:
 Mechanical, chemical, biological

Metrics in Practice

- At LoC
 - Identified underperforming spacesAchieved operating improvements
- At NYPL
 - Helped redirect capital plan for global improvements
- At NARA
 - Used in DC, Regions

Fundamentals of Preventive Conservation

Gather and organize information
 Materials and modes of decay
 Storage circumstances
 Present condition
 Analyze risks
 Take actions to minimize decay

Prototype of Collection Storage Information System

- Built for National Museum of Denmark
- Shown with permission
- Linked Information
 - Climate
 - Collections
 - Mechanical systems

The Image Permanence Institute Rochester Institute of Technology

www.imagepermanenceinstitute.org

www.climatenotebook.org

Acknowledgements

Andrew W. Mellon Foundation NEH Division of Preservation and Access National Museum of Denmark

