
National Archives and Records Administration
8601 Adelphi Road

College Park, Maryland 20740-6001

REFERENCE COPY OF TECHNICAL DOCUMENTATION FOR

ACCESSIONED ELECTRONIC RECORDS
(Copied: August 2, 2006)

National Military Command System Information Processing System 360
(NIPS 360 FFS), Volume I
User's Manuel 1 July 1971

RG 218 Records of the U. S. Joint Chiefs of Staff

The National Archives and Records Administration (NARA) has been accepting electronic
records into its holdings since the early 1970s. Technical documentation has accompanied
each transfer of electronic records. The documentation is necessary to understand the
meaning of the digitized bits of information within the electronic records.

Over the decades, NARA has had different procedures for compiling technical
documentation into an organized unit for researchers, and different expectations regarding the
content and extent of any NARA-produced portions of the documentation. Consequently,
the structure, organization and contents of the documentation reflect the procedures in place
when the technical documentation was compiled and arranged and may include out of date
addresses, telephone numbers, or other items of unrevised information related to the agency
that created or transferred the documentation and electronic records to NARA, to the NARA
unit that processed these materials, or to the physical media of the electronic records files.

In creating the reference copy of the documentation package, NARA staff have selected from
the technical and/or supplementary documentation available for this series or file(s). We have
annotated or highlighted the table of contents that follows to indicate which portions of the
full documentation for this series or file are included in this reference copy of documentation.
Any materials not included here are available upon request. Any user notes prepared after
the table of contents was prepared appear before the table of contents. This documentation
will differ in structure, organization and contents from technical documentation for other
series or files of accessioned electronic records. The readability and visual quality are also
variable.

NARA's web site is http://www.archives.gov

http:http://www.archives.gov

I

• NATIONAL

MILITARY

COMMAND
SYSTEMf SUPPORT

CENTER

,
DEFENSE

COMMUNICATIONS

. AGENCY

CSM UM 158-68
VOLUME I
1 JULY 1971

NATIONAL MILITARY COMMAND

SYSTEM INFORMA'TION

PROCESSING SYSTEM

360

FORMATTED FILE SYSTEM

.;.j

(NIPS 360 FFS)
. ';

USER'S MANUAL

INTRODUCTION TO

FILE CONCEPTS

Approved for public

releasei distribution
is unlimited.

RECORD OF CHANGES

CHANGE
SIGNATURE OF PERSON MAKING CHANGE NUMBER DATED DATE ENTERED

;",'

~l
,

i

fa.:~...

I

NATIONAL MILITARY COMMAND SYSTEM SUPPORT CENTER

computer System Manual Number CSM UM 15B-68

1 July 1971 .

NMCS INFORMATION PROCESSING SYSTE~------------.-------.--------­
J.6Q_FOR!1!ITEQ_f!LE2!~!~1L1NIf~_llQ_ff~1.

User's Manual

Volume 1 - Introduction to File concepts

Submitted' by:

9= ~mLARD
NMCSSC

~Z~~
B. E. HARSH B.ARGER

Technical Director

NMCSSC

Project Officer

APPROVED BY:

{~~
BR8CE MERRITT
Colonel, USA
Commander, NMCSSC

Copies of this document may be obtained from the Defense
Documentation Center, Cameron Station, Alexandria, Virginia
22314.

This document has been approved for public release and sale;
its distribution is unlimited.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $1.25

Stock Number 0805-0013

ACKNOWLEDGMENT

This manual vas prepared under the dir~ction of the
.Chief for P.rogramming wi th general tech nica 1 support
provided by the Interhational Business Machines corporati6n
under contracts DCA 100-67-C-0062" DCA 100-69-C-0029, DCA
100-10-C-0031, and DCA 100-70-C~0080.

ii

Section

1

1.1
1.2

2

2.1
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4

3

3.1
3.2
3.3
3.3.1
3.3.2
3.4

4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3

Page

ACKNONLEDGMENT. • ii:

ABSTRACT.................................. vi;

INTRODUCTION•••••••••••••••••••••••••••••• 1

System Components ••••••••••••••••••••••••• 1

Interrelation of Components ••••••••••••••• 3

SYSTEM CONCEPTS ••••••••••••••••••••••••••• 6

General File Organization ••••••••••••••••• 6

Data Record Organization•••••••••••••••••• 7

Data Record Elements •••••••••••••••••••••• 7

Data Record Element Hierarchy ••••••••••••• 8

Fixed Set•.................•.......... 8

Periodic Set •••••••••••••••••••••••••••••• 8

Variable Set•••••••• ~ ••••••••••••••••••••• 9

Data Record Identification••• ~ •••••••••••• 9

Data Record Organization Summary •••••••••• 9

Data Value r.1odes •••••••••••••••••••••••••• 13

Numeric !-1ode •••••••••••••••••••••••••••••• 13

Alphameric Mode ••••••••••••••••••••••••••• 14

Geographic Coordinate Mode •••••••••••••••• 14

Data Value Conversion ••••••••••••••••••••• 16

Data Value Editing •••••••••••••••••••••••• 17

General Langu~ge Specifications ••••••••••• 18

Definitions ••••••••••••••••••••••••••••••• 18

Language Format••••••••••••••••••••••••••• 19

NIPS 360 FFS Language contents •••••••••••• 21

NIPS 360 FFS Reserved Words ••••••••••••••• 24

SYSTEM USE ••••••••••••••••••••••••••••••• 27

Cataloged Procedures ••••••••••••••••••••• 27

Development of Conversion Tables ••••••••• 28

Development of Conversion Subroutines •••• 29

Assembly Language Routines ••••••••••••••• 31

COBOL User Subroutines ••••••••••••••••••• 33

Definition of Edit Masks ••••••••••••••••• 36

SAMPLE NIPS 360 FFS DATA FILE •••••••••••• 39

General File Organization •••••••••••••••• 39

Record Element Description•••••• ~ •••••••• 40

Subroutine/Table Description ••••••••••••• 49

Table RCMDS •••••.••••••• ~ ••••••••••••••• 49

Table OCMDS •••••••••••••••••••••••••••• 49

Table CTRYS •••••••••••••••••••••••••••• 50

iii

• • •

5

CONTENTS

Section

4.3.4
4.3.5
4.3.6
4.3.7

APPENDIX
A

A.l
A.2
A.3
A.3.l
A.3.2
A.3.3
A.3.4
A.3.4.l

A.3.4.2.

Table - ACTVS ••••••••••••••••••• • • • • eo-

Table - UNTJVS ••••••••••••••••••••••••••••
Subroutine DTGIS •••••••••••••••••••••••
Subroutine - DTGOS •••••••••••••••••••••••

GLOSSA,RY ••••••••••••••••••••••••• • • • • • • • •

Physical Description of the NIPS 360 FFS
Data File and File Format Table ••••••••••
Data Set Organization ••••••••••••••••••••
Data File Records ••••••••••••••••••••••••
File Format Table Records ••••••••••••••••
Classification Record ••••••••••••••••••••
Data File Control Record •••••••••••••••••
Element Format Records •••••••••••••••••••
Continuation Record Techniques •••••••••••
Continuation Records for the FFT Control
Record. • • • • . . • . •
continuation Records for Group Format
Records •••••••••••'••••••••••• • • • • • • • • • • • •

DISTRIBUTION..............................

DD FORM, 1473 •••••••'.......................

iv

Page

50
51
52
53

54

62
62
64
74
74
75
79
91

91

92

94

97

10

ILLU STRATIONS

figure Page , NIPS 360 FFS Data Record Organization

v

ABSTRACT

This volume presents system concepts and System Use; it
shows a sample NIPS 360 FFS Data File, the Glossary of
Terms, and a description of the NIPS 360 FFS Data File and
File Format Table.

The NIPS 360 is the total system composed of the 5/360
hard~are and S/360 Operating system (OS) used to support
lIPS 360 FFS software.

This document supersedes CSM UM 15A-68. Volume I.

Other volumes in this series are:

CSM UM 1.5B-65 Vol II - File Structuring (PS)
Vol III - File Maintenance (FM)
Vol IV - Retrieval and Sort Processor (RASP)
Vol V - Output Processor (OP)
Vol V1; - Terminal processing (TP)
Vol VII - utility Support (OT)
Vol VIII - Job preparation Manual
Vol IX - Error Codes

:rR 54A-10 - Installation of NIPS 360 Frs
CSM GD 15A-68 - General Description

vi

1

SECTION 1

INTRODUCTION

This volume is divided into five sections. Section
presents a general. introduction of the concepts and
applications of the NIPS 360 Formatted Fil~ Syste••

section 2 discusses the concepts of data storage in a
formatted file, the methods used for data'
validation/conversion, and the general language
specifications employed.

Section 3 dis~usses the method by which the system
.operates and procedures used in developing the data
validation/conversion routines which are defined by the user
for specific file applications.

Section 4 defines a sample data file which viII be used

in examples throughout the system documentation.

Section 5 contains a glossary of terms used in the
documentation.

Appendix A contains a detailed explanation of the
physical layout of NIPS 360 Frs iata set which is the user's
data file•.

."
l.~ System Components

The NIPS 360 FFS is made up of several relatively
independent components, each of which performs a function in
relation to data fIles of the system. The total complex of
components, working together, pr~vides the user with the
ability to perform the complex file processing job required
in . modern information management systems. Although
comprehensive descriptions of each of the components are
presented in the appropriate volames of the NIPS 360 FPS
User's Manual, a brief introduction to each is included ~n

L

1

INTRODUCTION TO FILE CONCEPTS

this section, since reference is made to the components in
establishing the file processing and language. rules covered
in this document.

a. . fi!g_S1,t:yctyri!!g_1£:§'L£Q!U~2!!g!!!: This component
establishes the necessary com~unications media
required by the balance of the system in data fi~e
processing. This comllunications media is called
the File Format Table•. Simply stated, a tabular
array of the essential attributes of each of the
user-described data elements is created by the
component. This array is stored as part of the
data file and is accessed by the other components
when processing user language statements.

b. 	 t:i!~ t1gi!lte!!g!!~_jrl1l._£Q!!£.Q!!2!!!: This component
generates and/or updates the user's data files
Several user languages are provided which permit
the· analyst to specify data validation procedu~es,
logical data examination and/or manipulation, and
summarization. Although the normal output of the
process is a data file in updated form, the analyst
m~y r~quest additional flauxiliary" output files
which are created as a by-product of tbe
maintenance function.

component is an analytical tool used to extract
information from one or more data files. This
component bas the capability to sequence the
extracted information in a variety of ways
determined by the requirements of the final output
report to be produced.

d. 	 qy.1£Y!_f!:Q£g2~[_10Pl._~~m.£2.!!.g-n.1 - This component is
used for formal report production and provides a
convenient method 3f listing, summarizing,
formatting and counting data elements. Control
mechanisms are provided which permit preparation of
reports of extre mely=omplex s.tructure. The data
source used in this report production may be either
a data file, or the answer set produced by the RASP
component.

2

• oj,"

"

e., rg£.mi!!al __ ~!:Q£!a2si!!.g, -lIfl', This Com ponen t is
actuallY composed of three major subsets in the
current version of ·the system. The first is the
programs required to interface with the graphic
display devices•. As such, the system user is
relatively unaware of its existence. The second is
the Quick Inquiry Processot (QUIP), which provides
the user with the capability to interrogate data
bases. Punctions performed are similar to those
performed by RASP and OPe This capability may be
utilized from the batched job stream as well as
from terminals. The third major subset 0,£ this
component is Source Data Automation (SODA) ~hich
provides the capability of maintaining data files
fr6m terminals. Input data may be edited,
corrected, and processed with prestorej FM logic
statements.

f. 	 Uti!itI_~Y.E12Q£~_j!l.I1._.f[Qg!:~!!2 This is a collection
of general purpose, utility programs which may be
utilized by the analyst in the performance of his

.job. 	 Significant among the varied capabilities
provided, is the data cbnversionfunction
accomplished by a set of programs of this
component. Thi~ capability provides the simple and
almost automatic method by which the user analyst
may directly convert a 1410 NIPS data base to NIPS
J 60 format.

Each component mentioned above is discussed in detail in a
separate volume of this manual (see listing in the
Abs tract) •

1.2 Interrelation of Components

Because of the flexibility of the systemj it is
difficult to establish specific relationships between the
various components. The following logical flow of
information through the system should 'be considered a
"typical" or normal example; however, it must be clearly
Qnderstood that the example is no way restrictive. Most of
the system components may be used in combination with other
components to build complex system functions. The various

3

INTRODUCTION TO FILE CONCEPTS

~ogical relations will b~~ome more apparent to the user.
analyst as he £ollows through the detailed descriptions of
the various components.

FS accepts the user's description of the data elements
,making up the data file in punched card form. output from
the component is the File Format Table (FFT) which defines
the structure of the file to be formed •. Since the FFT is an
actual physical part of the data base, file initiation is
performed by this step.

FM accepts the FFT as a part of its input. together with
transaction data the user desires to place in his file.
·Using the user's instru~tions (logic statements), it
performs the actu~l update function which results in the
updated (or new) data file. Paralleling this process,
various forms of "auxiliary" output may be. produeed under
user con trol.

The' retriever may then be utilized to extract
information from the data file. The result of this step is
the creation of two data sets: one containing the records
extracted from the data file, and the other consisting of
the sort or sequence control fields the user specified as
desired for answer sequencing. A standard sort is applied
to the sort fields, and the resultant file is retained along
with the data file created by the retrieval operation.
Since the sort field file includes "pointers" back to the
data file,' a direct' access technique of recovering the
retrieved data is applicable.'I

This composite of two files is tben passed to the Output
II Processor, which by applying user supplied instructions:

provides the desired final report. Note that the output
processor may accept a data file directly, ~ather than £irst
applying the retrieval process. This technique is useful
when the sequence of the output in the final report is not
critical or when it is the same ~s the original sequence of
the d a t a file.

System formatted output may be obtained with the Quick
Inguiry Processor (QUIP) which c~n also perform a retrieval
function. Using either a data file or the results of a

4

retrieval run· as a data source, output reports are quickly
and simply prepared.

The TP component utilizes local 2250 and 2260 devices
and remote 2260 or 1050 terminals as input/output units•.
Data files may be gueried and reports formatted or the files
maybe updated. Output data may be reviewed in a
conversational mode at the termiaals or may be directed to
printers. This processing will generally parallel the
processing by other system components•.

With this brief introduction, the rest of this volume
addresses the general concepts applicable to the total
system, and generally provides those common gUides require~
for use of any component.

5

INTRODUCTION TO FILE CONCEPTS

section 2

SYSTEM CONCEPTS

NIPS 360 FFS is a generalized file-handling system.
ijsing languages which have been specifically designed to
support the requirements of the users of the various
components, the analyst can define the capabilities to
process a specific data file. This section presents a btief
outline of the concepts of a NIPS 360PFS data file, the
method of handling data elements, and the general system
language specifications.

General File or~anization2.1

A data file created by a user with NIPS 360 FFS is a
collection of information pertaining to a common area. The
file consists of records, each of which contain data
describing the attributes of a single sUbject. For example,
the sample file pr.sented in section 4 is a data file
containing information describing the status and disposition
of all military units in the armed forces. Each record in
the file contains data which completely defines a single
unit. Thus the file is a collection of records with an
order determined by a unit indentification code.

Each record in a data file has a common format. This
format is defined by the user and com~unicated to the system
through the use ofthe FS component. The format of a .fi Ie
refers to the format of data records in a specified file.
Bach location in a record, where a data value is stored, is
called an element of the record. When the file is being
designed, the user assigns a mn~monic name to each element
in the record. The collection ~f element names, along with
their functional relationship, constitute the forma t of a
record and hence the file itself.

6

~

I
~
.j

1
I
1

i
I

I

I

I
I
I
1

The 60mplete description of a file's format is
maintained in the FFT which is· generated by the FS
component. During fil~ processing, the user states his
problem using the mnemQnic element names to re.ference data
locations in a record. The system translates these names
through the FFT into internal code allowing access to actual
recqrd data.

Examples of usage of the various concepts covered in the
following subsections are provided by Section 4, Sample NIPS
360 FFS Data File.

2. ~ Data Record organization

.2. 2. 1 Data Record Elements

The locations in a record, where data values are stored,
have been defined as elements of the record. An individual
element is called a field. ~his is the term used to
identify a portion of the data record wheie a single data
item, su~h as an individual's name l may be stored. During
the file definition process, this field is given a mnemonic
name which is stored as. an entry ~n the FFT. When the file
is processed, the use of the .field name in a language
statement p~rmits the user· to operate on the data contained
in a specific location of all records in the file. All the
individual element~ in the data· record are defined by the
user as fields and given unique nam~s. This pr9vides the
system with a complete map of the data organization in a
r.eco.rd.

. Occasionally, several adjacent fields in a data record
have a logical relationship, and.it would be desirable to
operate on them as a single item with one name. In such a
case, one or more adjacent fields may be defined together as
a group with a new name supplie1. An example of this would
be the case where two fields have been defined. to contain an
individual's last and first name, respectively.

7

http:r.eco.rd

INTRODUCTION TO FILE CONCEPTS

These two fields could be defined together as a group for
one-step data manipulation.

2.2.2 Data Becord Element Hierarchy

In conventional information systems, the- record is the
basic unit of information containing a fixed number of
element values. The NIPS 36Q FFS permits the user to define
a data record with a hierarchic~l relationship among the
elements of the retard. At the lower level, the record may
contain a variable numbe-r of data values for each element.
The term, s~t, is introduced to define a collection of data
record elements at the same level •.

2.2.2.1 Fixed set

The fixed set corresponds to the first level in data
record hierarchy. The fixed set is a collection of elements
(fields) which need only one data value to satisfy
requirements. An example of a fixed set element would be
the field (element) of the sample file in Section 4, COMDR,
·which contains ~he Commanding Officer's name. Since each
record of this file contains the in.formation on a single
military unit, there will be only one Commanding Officer.

2.2.2.2 Periodic set

In a data record there may be a ·collection of data
elements which may assume more than one set of data values
within the record itself. The collection of data elements
is called a periodic set. A periodic set is a collection of
data elements which are logically· related and may contain
~ultiple data entries, all with the same format.

A collection of data values whose format is defined for
the periodic sat is called a subset. The number of subsets
for a periodic set in a data record is under the control of
the user. A point of importance is that each subset is a
collection of data with the same format as all other subsets
of the same periodic set.

8

The NIPS 360 FFS allows the user to define a record
format which consists of one fixed set (from 1 to 100
fields) and up to 255 different periodic sets (each of which

'llay have from 1 to 100 fields defined). (See figure 1.)

2.2.2.3 Variable set·

The NIPS 360 FFS permits the user to define one or more
variable sets for a data record format. The variable set is
at the same level in the record as a periodic set.. Its
purpose is to allow.the storage of variable length data,
which cannot be formatted, in the record •. Only one ~lement
is defined for the variable. set which has the
characteristics of a field with unlimited length.. Data may
be added to or deleted. from the vatiable set of a data
record. However, retrieval operations against the file may
not use the contents o.f a variable set as· a c·ri terion for
record selection.

2.2.2.4 Data Record Identification

.S~nce data records identify a unique subject, a unique
record identification must be provided. The usetmust
define one or more elements of the fixed set to be used fat
record control.· The data value(s) found in this record
element(s) must be unique throughout the file. Very often
the data, and the elements used for such a .purpose, arE
~nown as the Record Control Group, Record ID, or Record Key.

2.2.2.5 Data Record Organization summary

This subsection uses figure I as a graphic example fot
the points covered. Shown at the top of the figure is a
block diagram representing a data file which may consist of
a variable number of records. For purposes of illustration,
one of the records in the file is flbroken out" to show its
possible configuration. The data format in this record is
the same as that used by all records in the file. However,
the data contents of the record, as well as the number of
data entries, may differ from record to record •.

9

INTRODUCTION TO FILE CONCEPTS

..
..

L

a.

..
..

a.

H..

L

;:;
II.

~

I

I
..
I ~~

~o ICuOw III:

H..
II.

..
L

~ rn· !rnI(> 2/ I(> IE

rI II

I /

I /

I /

,­
/

., ..
.,-­

a.
:

II.
:::!

L

:

I" -­
I "" -- ­
I '
. '

- ---­

I
II

~... >:oL '"'"",

~
W
III

0
w
l(

II.

II.
1

II.

..

IL
..

...
-

~
W
III

~
8
i
w
II.

-1;L

~
l-e
1 I­
IE W
0 I/)
II.

W
.::1 J

II

Z

~
Ir.
e
>

Fig. 1. NIPS 360 FFS Data Record Orqanization

10

This file has four elements defined as a fixed set.
These elements were defined as fields during FS with names
associa ted vi th each field •.. For example, the na mes FI, F2,
Fl, and F4 are used. When the record is created by the PM
component, the user can cause data from incoming transaction
records to be placed in the fixed set of the record by using
the field name as reference.

The file record shown in figure 1 has formats defined
for three periodic sets. The format and data used in
Periodic set I will be used for illustration.. When the user
defines the file format (data record), three logically
related elements could contain multiple groups of data
values within a single recor1. Therefore, during the
definition of the fields PIl, P12, and Pl3, the user defined
that the fields be treated functionally as Periodic Set 1.
This then established the common format which groups of data
values would follow as they are entered into the record.
Each group of data values, conforming to the format for
Periodic set 1, is referred to as a subset. The number of
subsets contained in a record's periodic set is never
defined by format. For Periodic Set 1, a~ shown in figure
1, there ~xists five subsets of data. When NIPS 360 FFS is
processing fil~ records, a single subset in a periodic set
is referenced at one time. Therefore, the use of the field
name, P12, in a retrieval statement has sequential access to
five different data values in one record.

In the variable set illustrated, no format is
established .for any data values. However, if a data tile is
to have records containing variable sets, this must be
defined in the FS run to establish internal pointers in the
record.. Any data that is placed in the variable set for a
record is maintained by internal pointers describing to the
system, the actual location, and volume of information.

The sizes of data records in a NIPS 360 FFS data file
may vary. If a file consists only. of a fixed set, then all

\ 	

records in the file ate of constant length. However, a data
file defined with one or more periodic sets for its records
will most likely have record lengths that vary considerably.
This occurs since the periodic sets of some records will
contain more subsets of data than others.

11

INTRODUCTION TO FILE CONCEPTS

,I

The maximum size of a data record is also a variable.
Por the output Processor, File Maintenance, and Quick,
Inquiry Processor components, t~e system allocates space
called a "processing block" to contain the part of the data

I record processed during the run.. The core allocation size
for the processing block is variable; the size allocated is~

I determined by the specific component. The default size
allocated by FM is 16#000 bytes, and the default size ~ allocated by QUIP is 10,000 bytes.. The analyst is thus
assured the' capability of processing complete records of a

II size up to 10,000 bytes in QUIP, and up to 16,000 bytes inj
PM., This constraint is a "worst case" condition, since the

1 	 system only loads that portion of the file record that is
I 	 being processed during the job, causing the record to be
I 	

loaded. Loading is performed on a set basia, so that a job
requiring examination of data from Periodic sets 1 and 2 of
a file requires the system to lo~d the fixed set, Periodic
Set 1, and Periodici Set 2.

:1

Effectively then, the analyst may choose to constrain
his file record size to 10,000 bytes and avoid any further
considerations of processing requireme~ts related to core
size. When using FM, the analyst can determine the size of
the processing block by putting

PARM=IPBSIZE=nK'

(where n can range from 1 to 99) on the PM EXEC card.
Simil~rly, when using QUIP in the batch mode, the analyst
can enter PARM=IPBSIZE=nK' on the QUIP EXEC card; (however,
because of design constraints, the QUIP processing block
cannot exceed 31K). For source direct QUIP runs against
ISAM files (this includes on-line QUIP), the system will
compute the size of the processing block required (up to
11K) and allocate that size. If a file design logically
requires larger record sizes, the analyst may still ~rocess

i
that file just as long as the combination of sets he desires
to process in a single job can be contained within theI
processing block allocation of the system.il

'II

1l

2.3 Data Value Modes
I
i The user of NIPS 360 has the option of selecting
!; different modes by which data will be stored in the record
j elements of the data file. During lS, each element in the

record's format is defined to hold its data value ~n a1
j specific mode. This mode selection specifies the internall method by which data is stored. It is necessary for
J employing and limiting certain types of operations aga~nst
I data during file processing.
1
i.

J
I 2.3.1 Numeric Mode
•
j Record elements (fields and groups) containing numeric

values, which will be processed using mathematical operators
(e.g., summations), should be defined as numeric mode.
Field elements defined as numeric are limited to a maximumj
of 10 integers within the
Although correct processing can
should generally not be defined
efficiency will be impaired.

range of !2,147.483,647.00.
be performed, numeric fields
within a group since system
Normally, all fields defined

as numeric, regardless of size, are stored in the data
record as binary words. This mode permits fixed pOint
binary arithmetic to be used by the system and allows full
use of the more efficierit binary set of machine
instruct~ons. When a numeric field is defined in a group,
the value contained in the field is represented as zoned
EBCDIC bytesa Required data conversions are made by the
system without user intervention.. Note that a numeric field
defined within a group is initialized to EBCDIC blanks. It
is the user/analyst responsibility to initialize these
fields to EBCDIC zeros during PM processing. Failure to
initialize these fields will result in data exception errors
when using these fields with arithmetic operators and data
value editing during output processing.

Any field or group defined as numeric mode will allow
output editing to be defined by the user. This function
permits leading zero suppression, decimal point insertion,
and so forth. Subsection 2.5 discusses the use of the Edit
function in NIPS 360 FFS.

13

http:2,147.483,647.00

INTRODUCTION TO FILE CONCEPTS

The numeric mode specifies that data values are to be
right-justified for a record element. This means that if a
numeric value is shorter than the defined element, the value
will be right-justified with zero padding on the left to
fill in the rest of the allocated space. If the numeric
value is longer than the defined element, truncation will
take place on the left when the data is stored •

.2.3. 2 Alphame:r ic Mode

Record elements (field and groups) which are defined as
alphameri~ mode, permit all characters of the EBCDIC set to
be stored as bytes. Data stored in this mode allows all
logical operations to be performed on them. However, they
may not be used as values in mathematical processing (e.g.,
addition, subtraction, etc.), nor may they be edited with a
user-defined mask during OPe

Record elements defined as alphameric mode imply that
data stored in them is left-justified. For example, if a
data value is shorter than the field or group where it is to
be stored, the value will appear left-justified in the
location with tra~ling blanks. If the data value is longer
than the field or group in the record, it will be stored
with truncation occurring on the right.

The system assumes the alphameric mode for all variable
sets in the data file.

2.3.3 Geographic Coordinate Mode

A special item mode designator. coordinate, is used for
cases where geographic coordinates are to be stored in the
data record for retrievals using the geographic retrieval
operators, Circle Search and polygon overlap. This mode may
be used for both field and group definitions, depending upon
the manner in which the coordinate values are stored. Each
term in a coordinate pair defines a. paint which will be
stored as a binary word in the data record. A standard
system subroutine will be used automatically to translate
the coordinate values to and from a binary word format when

14

the standard external forma t- is· followed. The user may
define the coordinat. point containing both latitude and
longitude as a single field and· the system will
automatLcally generate two binary words to hold the values
after conversion. He may also define the latitude value and
longitude values as individual fields and then define them
together as a coordinate group. The standard external
format is shown below:

Latitude·----.--­
AAMMX(5 bytes) BBBMMY (6 bytes)

B8BMM~SY (8 bytes)AAMMSSX (7 bytes)

where

A = Latitude in degrees

.B = Longitude in degrees

M = Minutes

S .: Seconds

X&Y .- App·ropt"ia te hemispheres •

If a uset" wished to define a coordihate value in his
record with the latitude and longitude as individual fields
with prec1s1on only to minutes, he would define two
coordinate fields with lengths of five and six ~ytes,
t"espectively. Then the two fields would be defined as a
coot"dinate group.

If the user wished to define a single field contai~ing
a coordinate point with precision to seconds, he would
define a coordinate mode field with a size of 15 bytes.

The coordinate mode may be used fot" a group containing
several fields and/ot" groups of coordinate data. This

15

INTRODUCTION TO FILE CONCEPTS

permits the use of a single name defining a line or area' to
be used with the polygon overlap search operator in the NIPS
components.. Such groups, howeve.r, a renot subject to
automatic input or output conversion by the system. Only
field/groups whose external length is 5,6,1,8,11, or 15 will
be automatically converted.

2.4 Data Value Conversion

The user bas the capability of defining routines which
may be used to perform data value conversion as data is
placed into or taken from a· record. Data may also bn

validated either as a transaction item or as it resides l;j

a record using thistechnigue ..

The conve~sion routines may be developed in two ways.
In one method, the user actually writes a subroutine using
One of the 05/360 programming languages to perform the
desired conversion process. The subroutine is written to
accept, through a calling sequence, the data item to be
converted. It returns the converted data value to the
calling sequence when finished. The <;>ther method available
to the user is to develop a table consisting of a collection
of argument-function pairs of data. The argument, being the
data to be converted and the function being the converted
data value, is supplied as a group on each source card.
Both methods have an appropriate cataloged procedure which
is used to develop the actual executable load modules using
source statements as, input. These resulting load modules
are placed on a predesignated library for use by all
components of the system. When the subroutines/tables are
developed by the user for an application, they are defined
for use in either input conversion or output conrersion. In
addition, they are defined to accept data and supply data
with specific lengths and moles. An input conversion
subroutine/table is used to acc~pt data input from either a
system work atea, a transaction record during update
processing, or a guery statement and produce a result
compatible for~airect placement in a data record field or
group. An output conversion subroutine/table is used during
output processing to accept a data value from either a data

16

record element or system work area to supply the conv~rted
result for output.

The use of conversion subroutines/tables may he either
automatic or under control of the user through the language
statements def~ning the particular. run. The following
comments describe the methods by which the conversion
routines are called into action.

During FS each field and group in the record may be ..
flagged with the name of an input and/or output
subroutine/table. This definition, atPS time will cause
the automatic use of the conversion routines whenever. the
field or group names so flagged are mentioned ib the
language statements of the RASP, OP, and QUIP components•..
The user may negate their automatic use in a run by
associating a sp~cial term ~ith the field or group name when
mentioned in a statement. , Conversely, the user may ove~ride
the specified conversion subroutine/table ana substitute
another one by providing the new subroutine/table name with
the field/group name in a statement.

All components of the system which perform file

processing a.llow the user ,the. capability to dynamically

state in his language statements the use. of a conversion

subroutine/table for a particular field or group. Thus

conversion may be effected for special appl~cations with a

data file. This technique also permits subroutines/tables

to be used for data validation or direct conversion in a

data record using the ,FM component.

2.~ Data Value Editing

Numeric mode elements in a data record may be edited
during output processing. _ This opt~on permits the user to
suppress leading zeros, insert decimal po!nts, and perform
~therediting functions. To define the editin~ function
performed on a record element, the user constructs an edit
mask contiining control characters. ,Special characters in
the mask indicate to the system the nature of the editing
operation.

17

INTRODUCTION TO FILE CONCEPTS

The user may define the editing function to the.system
in two different vays•. The first method is .to define an
edit mask for a iecord elem~nt when the file i~ structured
using the FS component. The.FFr entry for this element viII
then always carry the edit·~ask for use by the OP
components. If the edit mask is defined in this manner,
QUIP and OP will automatically use it whenever the record
element is referenced for output display.

The second way the user may define an edit operation is
to actually i~clude an edit mask as a literal associated
with an element in the language statement for a particular
application. The procedure used to write an edit mask is
defined in subsectiori 3.4 of this ~anual.

So far in the discussion of edit masks, it has been
assumed that the data value to be edited has come from a
numeric mode record element. However the user may employ a
different approach to data value editing as follows. Data
from a record element may be processed by an output
conversion subroutine/table and the result edited by a user
defined mask. Care must be taken to ensure that the output
from the conversion subroutine is
acceptable to the edit process.

numeric so that it is

2.6 General Language Specifications

Each system component has its own language wbich is used
by the analyst to define the file processing functions for
a computer run. Despite the number of different languages,
they may be easily learned by the~ analyst since they are
basically similar and differ only in their application to a
problem. This section of the manual is concerned only with
introducing the terminology of the languages. Eacb volume
of this manual will define the characteristics and use of
the associated language for that component.

2.6.1 Definitions

The following list defines some elementary language
terms.

18

liord 	 A contiguous string of characters,
generally considerd to be composed of the
alphameric set, and explicitly restricted
to exclude the special characters, blank,
comma, period, single quote, "at" symbol,
and ampersand•.

~reC1D 	 Generally used synonymously with word.

Clause 	 A string of words separated by commas
and/or blanks. The period is explicitly
excluded from the body of a clause.

sta temen t 	 May contain one or more clauses and is
always terminated by a period.

operator 	 A system reserved word expli ci tl y
directing an action~ For example, LIST,
EQUALS, GREATER, THAN, SUM, etc., are all
considered operators.

Connec tors - Generally
connectors

Condition A special
statement Statement,

restricted to the Boolean
AND and OR.

case of the general category of
this form implies that the

user is requesting the system to test for
a specified condition. Implies the
existence 0 f an act ion; directi ve
statement, either ex~licit~y or
implicitly stated.

Action 	 A special case of the general category of
stat emen t 	 Statement, this form is a user req~est

for a specific system action, and mayor
may not be preceded by a Condition
Statement.

2.6.2 	 Language Format
...

Several formats are comm6nly used in systems work. They
are often identified by names' such as free-format, comma­
format, and fixed-format. The preferred form generally used

19

INTRODUCTION TO FILE CONCEPTS

in this system is known as free-format. This format by
definition offers the following characteristics:

a. Words may be separated by either commas or blanks
or both in any combination, and in any number •.

b. Statements and/or
card to card, or

clauses may run serially from
more generally, from input record

to input .record. Words may not be split between
records or cards.

c. Statements may be initiated in any character
position of the input record, and .may terminate in
any position.

d. Other than cases in which the sequence of the input
statements are related to the sequence of functions
required by the system, no sequencing requiremen ts
are arbitrarily imposed.

Card columns 1-71 generally contain la~guage statements.
Some componen ts offer the capabil.ity of providing a card
sequence check if the user provided a sequence number of all
cards in his source deck in locations 73 through 80.

Some of the components require a parameter string with
optional values in the string. Since interrogation of the
string is based on a positional relation and identification
of the field information is not feasible without this
relation•. omitted fields must be clearly indicated to the
system. When this condition occurs, the basic punctuation
rule is changed:

Note: 	 words m~y be separated by one or more blanks,
or not more than one comma, with or without
multiple blanks. The notation "double comma"
indicates to the system that a field has been
omit ted.

The FM component uses a language which deviates somewhat
from the conventions outlined ab~ve. Because of the power
aud flexibiliti- offered by the component, the language
resembles that of a computer's assembly language.

20

2.6.3 NIPS 360 FFS Language C~ntents

The words or terms used by the analyst to describe a
file processing function must conform to the language
specification for the appropriate system component.
However, all component languages may have an analogy
~elating them to our own spoke~ language. For example, in
writing a statement to direct a processing function, the
words used are similar to the subject, verb, object, and
conjunct.ions in an English sentence. In all of the system
component languages, there are two basic types of words.
First are the system reserved words which are recognized as
indicating specific operations. The combination of these
words in a statement define the logic to be used by' the
system component. In an analogy to the English sentence,
these words would be considered the verb indicating the
action to be performed and/or the conjunctives indicating
the logical relationship o.f words.

The second major type of words in the NIPS 360 FFS
languages are those supplied by the user. These words could
be considered analogous to the subject and/or object of an
English sentence indicating what is involved in the
processing function and the r~sult obtained. The words
supplied by the user are of several classes and are
discussed below:

a. 	 !Amg§ -- Names are used by the analyst to reference
a file, record element or ~ field conversion
subroutines, conversion tables, and edit masks.
All names are formed under the following rule:

o 	 A name may be from one to seven characters
with no embedded blanks or special characters.
The first character must be alphabetic. All
remaining characters may be alphabetic or
numeric.

o 	 Names for data files and conversion
subroutines/tables must not end with the
character zero. The user quite often must
supply a data value to a system component
directly through the language statement. Two

21

INTRODUCTION TO FILE CONCEPTS

different options are available for this
approach, and such words are called self-
defining terms and literals.

b. 	 ~£.lt=-De!!!!.inLTe£l!§ -- A self-defining term is a
word made up of a string of characters with no
embedded blanks which is interpreted by the system
as a data value. The word is recognized as a self ­
defining term due to its syntactical position with
.respect to other words in a statement. An example
of self-defining terms is the following words which
will be treated by the system as a data value:

454
Tank

c. 	 l!it~~al2 -- A literal is similar in concept to a
self-defining term except that it is enclosed
within 'delineator characters to define its width.
The delineator used is the single quote sign
(although some components allow the alternate use
of an flat" sign). The purpose of the delineator is
to allow the definition of data v~lues containing
blank and/o.r special characters. . Examples of
liter als are:

'Heavy Tank'
'F-lOS'

d. 	 ~ystgj!!_J!ork_A'£~2 Most components of NIPS 360
FFS have intermediate work areas which are used by
the analyst to store data values. These work areas
are defined in several ways according to the
component concerned. Although they are reserved
words capable of recognition by the component being
used, they are used like names. This is because
they function as the .subject or object of a
sentence; i.e., they do not connote any action to
be taken# but merely are used to represent where
data may be found or stored.

e. 	 fi9.Y£S!liyg._~Q!!§lan.12-- Some components of NIPS 360
FFS permit the user of figurative constants to

22

I I
I

represent data values. These are reserved
words which stand for specific data values and may
be used in plaCe of literals or self-defining terms
if appropriate. Figurative constant words may
be such as:

ZERO
BLANK

As an example of a NIPS 360 FFS language, the following
RASP compone~t language statement is illustrated. This is
a conditional statement causing search of a data file for
qualifying records to be retrieved. The retrieval criterion

I• is indicated by user supplied data values in the statement,f
•j itself.

!~ AREA ~QQ!1 'SOUTH VIETNAM' AND SERVICE EQUAL ARMY.

The underlined' words are reser.ved woids recognized by the
system to cause specific actions to occur. The rema1n1ng
words are user supplied and defined words indicating the
specific ~ualification for action. Due to the syntax of the
language, the system will interpret the words AREA and
SERVICE as data record element names. The word SOUTH
VIETNAM is a literal u~ed to introduce a data value to the
system through the source language. Likewise, the word ARMY
is a self-defining term used to supply a data va~ue.

The special characters such as comma, blank, and period
are used by the different component languages for special
usage and have special significance to the system. The
mathematical operators, plus, minus, and equal symbols,
portray their normal math function in some uses.
Multiplication will be represented by the ~sterisk and
division by a slash. Parentheses are used to logically
group clauses. In addition to these direct and straignt­
forward rules, the following special characters are used foi
the indicated purposes.

# (pound 	or number symbol) Used to delineate subroutine
(8-3 punch) names in the input source

23

INTRODUCTION TO FILE CONCEPTS

language (other than FS). used
in double form, negates an FFT
specification for a subroutine.

I (Slash)
01-1 punch)

Used to separate numeric digits
when ~ndicating partial field
notation.

used as an "universal" match
$ (Dollar Sign)

(11-.3-8 punch)
character in comparison literals.

used to delineate literals •
• {Single Quote)

(5-8 punch)
used in double form, negates
an PFT specification for a edit
mask.

used to identify a field name used
& (Ampersand) as an operand of a conditional

{12 punch) expression in place of a literal
or self-defining term.

Used to identify a field to be
JD# (descending sort flag) so~ted in a descending manner

in either QUIP or RASP.

optional use of selected special characters which permit
compatibility with 1410 Frs source stat~ments is discussed
where ap~licable in each component volume of this manual.

NIPS 360 FFS Reserved Words
2.6.4

This subsection contains a list of reserved words which
are interpreted by the system. They. may not be used as
names in any language statements.

FINALC-LASSA FINDCLASSI!"ADD FORCOM.PUTEAFTER FROMCOORDALL

24

l

ALPHA
AND
ANY
,ARE
AT
AVERAGE
BEFORE
BETWEEN
BINARY
BLANK
BLANKS
BT
BY
CH
CHANGES
CIR
CIRCLE

LIMIT
LIST
LOAD
LT
LTE
MARK
MOVE
MUL
NE
NEQ
NL.E
NLIN ES
NLT
NLTE
NO
NOGO
NOT
NOTE
NUMER
OP
OPDATE

*COUNT{N)
CREATE
DECIMAL
DELETE
DISK
DISPLAY
DIV
EARLIER
EDIT
EJECT
EQ
EQUAL
EQUALS
EXECUTE
FIELD
FIELDS
FILE

OR
OVERLAP
OVP
PAGEND
PARAH
PER
PERCENT
PRINT
PSCT
PUNCH
QUERY
RECORDS
REPLACE
SELECT
SET
SORT
SORT KEY
SPACE
START
STOP
SUB

FU.R.THER
GE
GO
GREATER
GROUP
GROUPID
GT
GTE
*HEADER (N)
HTOTAL
IF
IN .
INITIAL
IS
LATER
LE
LESS

SUBRT
*SUM (N)
SYSDATE
TAB
TABLE
TEST
THAN
THAT
THE
THEN
TITLE
TO
TRAILER
VSCTL
WITHIN
*WORK (M)
ZERO
ZEROS

25

INTRODUCTION TO FILE CONCEP~S

*NOTE

a. iN) stands for either a blank or the numbers zero through nine

b. (M) stands for either a blank or the nu~bers one through nine.

c. The followin~ name prefixes are not allowed: PSSQ, VSET,

vsz.
The name, D, should not be given to a subroutine or

table because this is used t~ specify descending sort in

QUIP and RASP.

,
I'" , 26

SECTION 3

SYSTEM OS E

3.1 cataloged Procedures

When the analyst prepares a job using one of the system
components# two basic types of information are supplied to
the system to define its function. The first set of
information consists of job control statements written using
the OS/360 Job control Language (JeL). These statements are
interpreted by the 5/360 to define the characteristics of
the job such as input/output devices required and the
name(s) of the program(s) to be run. Refer to the IBM SRL
publication, IBM system/360 Operating system-Job Control
Language (Form C28-6539), for a descri~tion of Jet. The
second set of information supplied consists. of source
statements written in the language of the required NIPS 360
FFS component which define the specific .file processing
techniques.

To ease the requirement on the user that he supply all
the necessary job control statements whenever a system
component is used, cataloged pr~cedures have been.prepared.
These procedures are sets of previously written job control
statements which have been stored in a system Library. Each
procedure is given a name which is used by the analyst for
a particular job. The use of such a name in a Jet Execute
statement ~auses the system to automatically retrieve the
i~formation necessary to define a job to the computer. In
the simplest case, a job using the cataloged procedures for
the FS component would appear as follows:

II) IIJOBXYZ JOB (Standard Parameters)
(2) II EXEC XFS,ISAM=TESTER,LIB=TESTER
(3) IIFS.SYSIN DD *
(4) CPS language source statements)

{S) 1*

27

INTRODUCTION TO FILE CONCEPTS

Card I -- Is required for each job submitted and must be
first in the input deck. It is known as the JOB statem~nt
and is used to give the job a name such as JOBXYZ.

Card 2 -- Defines the cataloged procedure used for the
job. The name XFS defines a set of job control statements
in the library necessary to support the execution of the
Pile structuring Component. The remaining parameters
identify the name and type of file to be structured and the
name of the File Library.

Card 3 -- Defines the location where the source input
language statements may be found. In this case, the
asterisk is a parameter which indicates to the system that
the source input immediately follows.

Card 4 r- Is the source language statement,s) written by
the user to define the specific functions desired from the
componen t.

Card 5 Is a special JCL statement indicating the end
of the source statement deck.

The parameters entered on the execute statement (Card 3)
are known as symbolic parameters. Their function is to
dynamically alter the prestored procedures at e~ecution
time. The values entered in this manner replace those that
were defined when the cataloged procedure was placed in tbe
Procedure Library.

3.2 Development of Conversion Tables

When the user has the occasion which warrants the
conversion of data values from one form to another and the
problem lends itself to tabular conversion, the cataloged
procedure XTABGEN may be used to-easily generate such a
table. The input to the procedure XTABGEN consists of cards
each of which contain an argument-function pair of data
values. The argument is the data value 'wh~ch is to be
converted and t~e function is the data value resulting from
conversion. T~e procedure will accept these source cards
supplied by the user and build the table itito an executable
load module capable of linkage with any NIPS 360 FFS

28

component. The load module table may be stored in a library
along with other tables. subroutines, retrievals, and RITs
(Report Instruction Table used by the OP component to direct
output processing). The name supplied by the user for the
conversion table must conform to system standards and be
unique in the library in which it is stored. The table may
be called by name for use with any file when it is
appropriate.

Information and examples on the manner in whicb the
procedure XTABGEN is used may be found in the utility
support Programs volume of the NIPS 360 FFS User's Manual.

3.3 Development of Conversion Subroutines

When conversion for record element data is desired, but
does not lend itself to a tabular approach, the user may
wish to write a subroutine to perform the conversion~ The
subroutine may be written using any of the 05/360 supported
problem processing languages. The subroutine is compiled,
link edited, and tested by the user before inclusion in the
system. A cataloged procedure XSUBLDR is available to the
user for loading the subroutine (in load module form) into
a library with NIPS 360 FFS cqmpatible linkage established.
Use of this cataloged procedure requires the user to have
the tested subroutine as an independent load ~odule on any
library. Its location is defined to the cataloged procedure
XSUBLDR through a JCL statement. Description on the use of
XSUBLDR is found in the utility Support Programs volume of
the NIPS 360 .FFS User's Manual.

When writing the conversion subroutines, certain
conventions must be followed. The remainder of this section
describes such co n17entions.

The user-written sUbroutine should be written as a
single root segment that is reuseable, and the calling
sequence for ·the subroutine from a system component should
follow standard 05/360 linkage conventions. Three
parameters are provided to the user routine. Parameter one
is the entry point to the system subroutine loader.
Parameter two points to the area P2 described below and
Parameter three is a cell for return code storage.

29

"I

:11
'I'I,!
:1
1,I

':1

INTRODUCTION TO FILE CONCEPTS

P2 DC H 'N' N = 	 number; of argument bytes including
trailing bla nks or leading zeros

DC CLN • , argument '. bytes-.~.

. ,DS eLM M = 	 function length

The argument and function may be either alphameric,
binary full word, coordinate data or EBCDIC decimal (a
particular subroutine is designed for a specific type of
argument and function combination••. No boundary alignment
of argument and function areas can.be assumed. The output
function area should be filled with leading ze.ros for
decimal data and trailing blanks for alphameric data.
Decimal data will have 'F' and 'D'sign zone bits.

The function output areai.me,dia tely follows the
argument bytes. The_high-order pOSition of this area is P2
• N • 2. Conversion routines must be written to accept
Yariable length alpha, decimal or.coordinate arguments. The
output function size is fixed for a given routine and should
always be completely filled." The combined lengths of the
argument and function may not exceed 256 byt.es.

Upon re·turnfrom the user routine, either register 15
can contain one of the following return characters or the
cell des~gnated by parameter 'three can be filled
accordingly:

S = Successful

~ = No Match, unsuccessful

The subroutine
routines so that
other routines.
performed by the

loader entry point is provided to user
they may request loading or linking to

No input/output functions should be
user routine.

When the SUbroutine is placed on
entry point n'me and the load module
aust be the same. The names must be

30

a Work Library, the
name (PDS member name)

identical due to the

! I
1

requirements established for ~se of the SUBLDR utility
program.

3.3.1 Assembly Language Routines

The routine should use the following macro as its first
'r: ins·tr uction.

SUBNAME PFSBEGIN BASEREG

This macro will genera te t he proper eSRCT and SA VE
linkage. Register 13 ~ill point to a generated SAVE area
and should not be used by the conversion routine. Register
BASEREG will have been initialized as the routine base
register along with the appropriate USING statement.

: ., Register 1 will point to the pa:rameter address constant
list. When returning control, register 15 may contain the
return code as discussed previously and the following macro
used to return control.

FFSRETRN RC= (IS)

otherwise, the byte indicated by parameter three must be
filled with '5' or 'M'.

The following is an example of an ASSEMBLY LANGUAGE
subroutine:

/IASL'tSIJB .
//ASM.SYSLIB
II
/IASM.SYSIN

EXEC ASMPCL,PARM.LKED·='MAP,LIST,LET,DC·I
DD
DD DSN=FPS.MACLIB,DISP=SHR

DO •
DTGOS START
*A DATE CONVE~SION ROUTINE
* CHANGES FILE" DATE FROM YYMMDDTTTT TO.OUTPUT AS DDMMMYY/TTTT
*LOAD BASE REGISTER, SAVE CALLING PROGRAM REGISTERS, LINK CALLING PGM
*
DTGOS FFSBEGIN 7

L 8,4 (1) LOAD ADDRESS OF DUMMY SECTION
USING PARMLIST,8 INIT REG 8

*
SR 6,6 ZERO OUT 6
LA 6,12(6') ADD 12 TO 6 PUT IN REG 6

31

INTRODUCTION TO FILE CONCEPTS

* .*~OVE INPUT DATE TO WORK AREA, R&PORMAT DD AND II

*CONVERT TWO DIGIT MONTH TO SYMBOLIC THREE CHARACTERS

*RETORN AN'S' SUCCESSFUL OR 'M' UNSUCCESSFUL IN REG 15

MOVE MONTH WORK AREA Foa CO~PARE* MVC DIGMNTH(2) ,PARM1POS+2 LOAD ADDRESS OF TABLE INTO REG 5
LA 5,TABLE COMPARE TWO DIGIT MONTH TO TABLE
CLC DIGMNTH (2) ,0 {S)LOOP 	 IF EQUAL GO MOVE SYMBOLIC MONTH
BE FOUND

.J ADD 5 TO REG 5 and PUT IT IN R~G
LA S, 5 {S) EXIT IF R6 GETS TO ZERO
BCT 6,LOOP UNSUCCESSFUL CONVERTIe 15,=C'MtERROR TEMPORARY FIXER ******** MVC MONTH(3),:C'XXX' GO TO EXIT ROUTINEBOAT EOEXT SUCCESSFUL CONVERTIC 15,=C'S'FOUND 	 MOVE SYMBOLIC MONTH rOWORK AREA
MVC MONTH(3) ,2{S)

DATEOEXT MVC DAY (2) ,PARM1POS+4
 REFORMAT YEARMVC YEAR(2) ,PARM1POS
SAVE TIMEMVC TIME(4),PARM1POS+6 MOVE REFORMATTED DATE TO LISTMVC PARMLNH+12(12) ,WORK1

PFSRETRN Re= (15)

*CONSTANT SECTION

*

DS 	 OF
WORKOCL12WORK1 DS AREA

DC 	 CL2'DAY 	 REFORMATCL3' .MONTH DC 	 DATE
CL2'YEAR DC ANDDC 	 CL l' /.

TIMECL 4'TIME DC
* 	 I TWO DIGIT MONTH WORK AREA

CL2'DIGMNTH DC

REGISTERS
* 	 AREA TO STORE

DS 	 18FSAVE
C'01JAN'TABLE DC

DC 	 c'02FEB'

C'03MAR'
DC
C' 04 APR I.DC

DC C'OSMAY'

C' 06JUN~t"'
DC

DC C' 07JUL'

DC c'08AUG'

DC C' 09S,EP'

II

I,

: i 	 32
,I'i"
i '
1'1

" ,

5

DC C' 100CT'
DC C'11NOV'
DC C'12DEC'

*
*D,UtlMY SECTION

* PARMLIST DSECT
PABMLNH
PARM1POS

DC
DS

H'10'
CL10' •

ARGUMENT
ARGUMENT

LENGTH

DS CL12 FUNCTION MAX SIZE
DC CLl' I RETURN CODE

* END
/*
//LKED.SYSLMOD DSN=TESTERL(DTGOS),DISP=OLD
/*

3.3.2 COBOL User S·ubroutines

The subroutine is called as follows:

CALL 	 'SUBNAME' using DUMMY P2 Pl.

T he first linkage pa.rameter is provided "for use by assembly
language routines only but must'be accounted for by
COBOL subroutines.

LINKAGE SECTION.

~l 	 DU.liMY.
P2 NOTHING PICTURE X.

511 	 P2.
92 ARGLEN PICTURE 5(99) usage computational.
P2 ABGFNC PICTURE etc.

Jll 	 P3.
Jl2 RETURN-CODE PICTURE X.

CODE must be f~lled with '5' or 'M' to indicate
successful or unsuccessful conversion respectively. ARGLEN
conta~ns the number of bytes in the ARGFNC area. containing
the argument data.. Function data should be inserted in
lRGFNC immediately "following the last argument byte
{ARGFNC+N where N=number of bytes in the argument}.

33

INTRODUCTION TO FILE CONCEPTS

The following statements should be inserted in the

PROCEDURE DIVISION

ENTER LINKAGE.

ENTRY tSUBNAME' USING DUMMY P2 P3.

ENTER COBOL.

The following is an example of a COBOL subroutine which

serves the same function as the ALe conversion subroutine in

the previous paragraph.

//COBSUBS1 EXEC COBFCL~PARM.COB:·MAP,BUP=12282,NOSEQ,LINECNT=50·
//COB.$YSIN DD *
000010 IDENTIFICATION DIVISION.

000020PROGRAM-ID. ·COBSUS'.

000030 ENVIRONMENT DIVISION.

OOOOqO CONFIGURATION SECTION.

000050 SOURCE-COMPUTER. IBM-360 H50.

000060 OBJECT-COMPUTER. IBM-360 H50.

000070 DATA DIVISION.

000080 LINKAGE SECTION.

000090 01 DUMMY •

. 000100 02 NOTHING PICTURE XXXX.
000110 01 P2.
000120 02 ARGLEN PICTURE XX •.

000130 02 IN-YEAR PICTURE XX.

000140 02 IN-MONTH PICTURE XX.

000150 02 IN-DAY PICTURE XX.

000160 02 IN-TIME PICTURE XXXX.

000170 02 OUT-DAY PICTURE XX.

000180 02 OUT-MONTH PICTURE XXX.

000181 . 02 OUT-YEAR PICTURE XX•.

000190 02 SLASH PICTURE X.

000200 02 OUT-TIME PICTURE XXXX.

001010 01 P3.

001020 02 RODE PICTURE X.

001030 PROCEDURE DIVISION •.

001040 ENTER LINKAGE.

001050 ENTRY 'COBSUB'USING DUMMY P2 Pl.

001060 ENTER COBOL.

001070 INITIALIZE.

34

001080 MOVE'S' TO RODE.
001090 MOVE fl' TO SLASH.
001100 MOVE ZEROES TO OOT-DAY.
001110 MOVE 1XXX' TO OUT-MONTH.
001120 MOVE ZEROES TO OUT-YEAR •.
0011 J 0 MOVE ZEROES TO OUT-TIME.
001140 CHECK- YEAR.
001150· IF IN-YEAR IS GREATER THAN '99',
001160 OR IN-YEAR IS LESS THAN '00'.
001170 ~OVE 'M' TO RODE, GO TO CHECK-MONTH.
001180 MOVE IN-YEAR TO OUT-YEAR.
001190 CHECK-MONTH
001200 IF IN-MONTH IS EQUAL TO '01', MOVE 'JAN' TO OUT-MONTH,
002010 GO TO CHECK-DAY 31.
002020 IF IN-MONTH IS EQUAL TO '02', MOVE 'PEB' TO OUT-MONTH,
002030 GO TO CHECK-D.AY28. ,
0020QO IF IN-MONTff IS EQUAL TO '03', MOVE 'MAR' TO OUT-MONTH,
002050 GO TO CHECK-DAY31 •.
002060 IF IN-MONTH IS EQUAL TO '04', MOVE 'APR' TO OUT-MONTH.
002070 GO TO CHECK-DAY30.
002080 IF IN-MONTH IS EQUAL TO '05', MOVE 'M~Y' TO OUT-MONTH,
002090 GO TO CHECK-DAY31.
002100 IF IN-MONTH IS EQUAL fa '06', MOVE 'JUN' TO OUT-MONTH,
002110 GO TO CHECK-DAYJO.
002120 IF IN-MONTH IS EQUAL TO '07', MOVE 'JUL' TO OUT-MONTH,
002130 GO TO CHECK-DAY31.
002140 IF IN-MONTH IS EQUAL TO '08', MOVE 'AUG' TO OUT-MONTH,
002150 GO TO CHECK-DAY31.
002160 IF IN-MONTH IS EQUAL-TO '09', MOVE 'SEP' TO:OU~-MONTH,
002170 GO TO CHECK-DAY30.
002180 IF IN-MONTH IS EQUAL TO '.10', MOVE 'OCT' TO 9UT-MONTH,
002190 GO TO CHECK-DAYJ1.
002200 IF IN-MONTH IS EQUAL TO '11', MOVE 'NOV' TO OUT-MONTH,
003010 GO TO CHECK-DAY30.
003020 IF IN-MONTH IS EQUAL ro '12', MOVE 'DEC' TO OUT-MONTH,
0030JO GO TO CHECK-DAY31.
003040 MOVE 'M' TO RODE.
003050 CHECK-DAY31.
003060 IF IN-OAf IS GREATER THAN '00',
003070 AND IN-DAY IS LESS THAN '32', MOVS IN-DAY TO OUT-DAY,

003080 GO TO. CHEe K-TIME.

003090 MOVE 'M' TO RODE, GO TO CHECK-TIME.

003100 CHECK-DAY30.

35

I~TRODUCTION TO FILE CONCEPTS

003110 IF IN-DAY IS GREA~ER THAN '00', ,
AND IN-DAY IS LESS THAN '31', MOVE IN-OAf TO OUT­003120
GO TO CHECK-TIKE.003130

MOVE '1'1' to RODE, GO ro CHECK-TIME.003140
003150 CHECK-DAY28.

IF IN-,DAtIS GREATER THAN '00',003160 AND I.N=DAY IS LESS fH.AN '29', MOVE IN-DAY TO OUT­003110
GO TO CHECK-TIME.003180

003190 MOVE '1'1' TO RODE.
003200 CHECK-TIME.

IF IN-TIME IS GREATER THAN '00 1
,004010

AND IN-TIME IS LESS THAN '2401',004020 HOVE IN-TIME TO OUT-TIME, GO TO DEPART.004030
MOVE I M' TO RODE.00'1040

004050 DEPART.

IF RODE IS NOT EQUAL TO 'ft', HOVE '5' TO RODE.004060
ENTER LINKAGE.00'1010

004080 RETURN.

004090 ENTER COBOL.

1* DSN=TESTERL(COBSUB) ,DISP=OLD,UNIT=2J14//LKED.~YSLHOD DO
I/LKED.SYSIN DD * ENTRY COBSUB
1*

The linkage editor control card, ENTRY COBSUB, isNote:
necessary for a COBOL subroutine (this name must
correspond with the na.meof the subroutine as
defined on the ENTRY statement in tbe PROCEDURE
DIVISION).

Definition of Edit MasksJ.4

The user writes an edit mask in a language statement as

a literal. That is, single quote signs are used for

delineation. The edit capability of NIPS 360 FFS permits

the user the following features when applied to a numeric

<lata value:

a. Zero sU-ppression

b. Sign control left or right

36

c. Leading and trailing signific~nt characters

d. Character insertion.

The remainder of this section discusses the techniques of
writing an edit mask.

Any character which can be printed may be used in the
edit mask except a quote mark. However. certain characters,:
namely ampersands, blanks, and zeros, will not appear as
such in the output. Furthermore, minus or credit (CR~
symbols have special meanings. One_ character positioQ in
the output is represented by one character in the edit mask..:
Non-special characters in the mask _will be printed in the
same relative position in the output field. _ A mask may be
132 characters long; however, certain NIPS components have
shorter limits, As in most cases, since n~ more than 1~
replaceable characters (blanks or zeros) can be filled by
source data, edit masks should tend to be less than ~O
characters long.

The actions taken for each special character in the edit
mask are given below.

Blank -- Each blank in the edit mask will be replaced by
a digit from the source field.

Zero each zero in the edit mask will be replaced by
a digit from the source field, and the leftmost zero will be
the right most limit of zero suppression.

Ampersand -- Each ampersand in the edit mask will be
replaced by a blank in the output field.

Minus sign If the minus sign is to the left of th~
first replaceable character or to the right of the last, it
is considered a sign control character. If the sign field
is negative, the ~inus sign and any other nonrepla~eable
characters occurring with it are printed. If- the sign is
positive, neither the minus Sign nor the accompanying
characters are printed.

37

INTRODUCTION TO FILE CONCEPTS

eR -- If the character C is immediately followed by the
character R on the left of the first replaceable character
or on the right of the last replaceable character, they are
considered as sign control characters, and are treated just
like a minus sign.

The following examples should clarify the use of these
special characters•.

12345 12345• bb~bb'
00001 bbbfl1

123 bbbbhl2JXX• XXCR&f,JbbXX'
XXCRb123XX-123
bbbbbbOIXX001
XXCRbb01XX-001

12 S.12b• $. bb- ,
$.12­-12

01 $.Olb
-01 $.01­

bl/Ol/68'flb/bb/bb' 010168

If the size of the source field is known when the edit mask
is first processed, a test is made to see whether that many!!

i replaceable characters exist. If the source is too long,
~he edit mask is rejected. If the source is too short, the
system will start at the left and replace the blanks and
zeros with ampersands until the desired number of
replaceable characters remain. This occurs before the test
for CR and -, but after the test for zero. Thus, a mask of
O-bbb for which a three-character source field is specified

. viII cause a 001 field to be printed as bhOOI.

If the size of the source field is not known when the
edit mask is first processed, the system will count the
number of replaceable characters and return this number to
the calling program.

38

SECTION 4

SAMPLE NIPS 360 FPS DATA FILE

This section introduces a sample data
typical for the files handled by the
presented here since the Userfs Manuals for
will use examples pertaining to this file.

file
system.
all c

wh ich is
It is

omponents

4.1 General File Organization

The name of the sample file is TEST360. Its structure
is ·defined to contain information concerning the status,
or~anization, location, and equipment of combat units of the
armed forces. Each data record in the file defines a single
unit in the armed forces. Hence, the key ·to each record
will be the unit's identification COde. Data in each record
has been formatted into a fixed set, six periodic sets, and
a variable set. Data conversion subroutines and tables have
been defined to process some of the record's data.

The logical breakdown of data in a record is disc~ssed
below.

FIXED SET 	 The fixed set contains data defining the
attributes of the unit which need only
one data value for satisfaction. Examples
of this are the unit's location, status,
activity, and commander's name.

Periodic Sets - The six periodic sets are used to contain
information defining the unit whose
record elements may have more than one
data value. For a periodic set, each
collection of data having the same format
is called a subset of the periodic set.

39

INTRODUCTION TO FILE CONCEPTS

PERIODIC SET 1 - Each subset contains data describing a .
piece of major equipment or a weapon
type possessed by the unit.

PERIODIC SET 2 - Each subset contains data describing
a piece of secondary equipment or non­
essential material not required for
the uni t • SQpe.ration.

PERIODIC SET 3 - Each subset contains data describing
~n operation plan which the unit must
follow.

PERIODIC SET 4 - Each subset conta ins the name of a treaty
to which the unit is responsible.

PERIODIC SET 5 - Each subset contains information on a
senior or staff officer. of the unit.

PERIODIC SET 6 - Each subset lists a subordinate unit
reporting to the unit.

- The variable set in each record containsVARI ABLE SET
commenta.ry information about the unit.

4.2 Record Element Description

This section describes each·elementin the file's record
format. Th~ source language statements used to define the
format of this file appear in the File structuring volume of
the NIPS 360 F.FS User's Manual.

40

http:commenta.ry

Input OutputElement setBlement Cony. Remarks
R!m~--- _IIJ2!!.-- l!2.:..-_ i&!1J!g1h 112~!_ £21Us. --- --..-------------
SElfV Record Fixed

control.
Field

1 ALPHA HCKDS OCKDS Service .Branch
Code

UUIN Record
Control
Field

Fixed 5 ALPHA Unit Identifier
(Service) ,

UIC

tJNTYY

Record
Control
Group

Field

Fixed

Fixed

6 ALPHA

ALPHA

Unit Identification .
Code (Fields -
SERV. 'UUIN)

Military Unit
Type Code

UNTYZ Field Fixed I ALPHA Major Unit
Indicator

·UNLVL Field Fixed 3 ALPHA UNLVS Unit organization
Level

(Fields-UNTYl,
UNTYZ, UNLV.L)

HOME Field Fixed 1 ALPHA RCKOS OC"DS Current
Command

Home.

UNFLG Field Fixed 1 ALPHA Unit Flag -
Reserved for
Special Use

KJPOR Field. Fixed I ALPHA Majo·r Force
Indicator

PREY Field Fixed I ALPHA RClIDS oeMOS Previous
Command

Home

41

INTRODUCTION TO 	 FILE CONCEPTS

Element Element set Input
!!m~__~ _!l~!_- !2~_ ~ng1b 12~!_ ~2n!~

ALPHA aCrlDSATACH Pield Fixed 1

ALPHA RCftDSFUTU Field Fixed 1

ALPHA DTGISTBDTG Field 	 Fixed 10

Fixed ALPHAUNRDY Field 2

ALPHAREASN Field 	 Fixed 1

Fixed ALPHABATTN Field 	 2

RECDE Group 	 Fixed 5 ALPHA

ALPHA DTGISBADTG Field 	 Fixed 10

UNIT Pield Fixed 12 ALPHA

UNAME Field Fixed 27 ALPHA

Fixed ALPHAOPCON Field 	 6

COrlDB Field Fixed 20 ALPHA

LOC Field Fixed 18 ALPHA

Fixed COORDPOINT Field 	 11

Output
£2n!.!.-	 !n!I.!2_________

OC~DS 	 Attached Comm~nd
Reporting Units st

OCMDS 	 Future Home Comman

DTGOS 	 Transfer Date to
New Command

Readiness status

Readiness Down­
grade Reason

Readiness Expected
to Attain

Unit Readiness
status (Fields­
UNRDY,REASN,RATTN)

DTGOS 	 Attainable Readi­
ness status Date
and Time

Short Unit Name

Full Uni tName

Ule of Higher
Unit Having
operational Contro

c.o. Name and Rank

Location or Hull
Number of Unit

Geographic 	Locatio
(Lat·Long) of Unit
Headquarters

42

Input Output

112g~_ £Q!!!s. £QUI£._ Remar ks

.atus

,d

)1

)D
:s

Element
!!~~--

DAPTl

DAPT2

DAPT3

DAPT4

AREA

eNTRY

CNAM

GEPOL

·PERS

ACTIV

LAUD

Elemen·t
.-l.I.2~_

Field

Pield

Field

Field

Group

Field

Field

Field

Field

Pield

Field

set
li2.s.-_

Fixed

Pixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Pi·xed

.Fixed

Fixed

L~ill

11

11

11

11

44

2

15

2

6

2

10

COORD

COORD

COORD

COORD

COORD

ALPHA CTRYS

ALPHA

ALPHA CTBYS

NUMER

ALPHA ACTVS

ALPHA

43

Geographic Points
(Lat-Long) ·Defined
in Counterclock­
wise Order Which
Defines the Un.it's
Area o.f Deployment
or .responsibilit.y

Coordinate Area
.(Fields-DAPTl,
DAPT2, DAPT] ,
DAPT4)

country Code
Where Unit is
Located

Country Name Where
unit is Located

Geopoli tical
Co.de Where Unit is
Loca.ted

Authorized
personnel strength

Current Activity
Code

Date-Time of Last
Record Update

IITRODOCTION TO FILE CONCEPTS

BlementE1ement
!!!!L__ _Iy,eg__

set
!!21-_ L~l!Sl1h Mode- ----­

Input
Con v.----­

output
~n.!!- Remarks-------­ ----­

LYB Field Fixed 1 ALPHA Location status
Whether Knovn,
Unknovn, or
Embarked

RPERS Field Fixed 1 NUMER Personnel
ness Code

Readi­

R8QPT Field Fixed 1 RUMER Equipment Readi­
nesS Code

ITRNG Pield Fixed 1 HUMER Training Readi­
ness Code

RMGRP Group Fixed 4 NUMER Readiness Group
(Fie1ds-RP2RS,
RSPLY, REQPT,
RTRNG)

READAVG Field Fixed 3 HUMER Readiness Average
to Hundredths

RITNM Field Fixed 3 HUMER Radius of Maximum
Distance from
Command Ship - to
Tenths Naut. Mile

UNTYP Field Fixed 5 ALPHA Unit Type Code

TPNAM Field Fixed 42 ALPHA Unit Type Name

UNTOE Field Fixed 17 ALPHA T/O and E
Reference

HIER Field Fixed 11 ALPHA Un.it
Code

Hierarchy

~
~

Element Element Set Input Output

~1!lg___ Co!!.!~ Rem!£~2_________
IIl?~L !!.Q.:!.-- Leng!Q !!Q!!g- £Q!!'y~

COMM ENT Field Fixed Variable 	 Variable Length

Field to Hold

Comments

MEeL .Field 1 3 ALPHA 	 Major Equipment

Class

MEQPT Field 1 10 ALPHA 	 Major Equipment ID

MECLQ 	 Subset 1 13 ALPHA Major Equipment

Control Class and Type

Group (Fields - PlECL,

MBQPT)

HEMOD Field 1 10 ALPHA 	 Major Equipment

Model Number

MENAM Field 1 18 ALPHA 	 Major Equipment

Name

MECAP Field 1 1 ALPHA 	 Weapon Delivery

Capability Code.

MEPSD Field 1 3 NUMER 	 Number of Equip­
ments Possessed

MEADA Field 1] NUMER 	 Number of Equip­
ments on Alert

MEORe Field 1 3 NOMEB 	 Number of Equip­
ments Ready for
Conventional
Weapon Delivery

MEORN Field 1 3 NOMER 	 Number of Equip­
ments Ready for
Nuclear Weapon
Delivery

45

J' '~-!l
INTRODUCTION TO FILE CONCEPTS 	 !:

"

'
!~

)
Input OutputElement Element set

No~__ ~Q!!!~- RemarksUJ!!.~__ _I.YE~__ L~!!.g.tb. l!Q~g_ £2!!.!!~ 	 -------------­
Number of Equip­ftESQP Field 1 3 NUMER
ments on Special
Alert

3 NUMER 	 Number of Equip-ItESWP Field 1
ments on Special
Alert with
Nuclear Capability

Special AlertI!ESIA Group 1 6 NUMER
Group (Fields ­
MESQ p. MES WP)

MESIC Field 1 3 NUMER 	 Number of Equip­
ments Committed
for Special Alerts

10 ALPHA 	 EquipmentMEREC Field 1
Reconnaissance
Capability

Code indicatingMEDEP Field 1 1 ALPHA
if Equipment is
at Home Location
or TDY

Date El]uipmentHEDDT Field 1 5 NUMER
went on TDY Status
(Julian Date)

TDY Duration CodeALPHAMEDUR Field I I

TDY DeploymentMELYN Field 1 1 ALPHA
sta tus

46

M
I

http:L~!!.g.tb

Element Element

_Iy~gName __

MELOC Field

MEPNT Field

METRY Field

MEPOL Field

MECNA Field

SECLASS Field

SEMODEL Field

SENAM E Field

SEPOSSD Field

SEAUTH Field

PLAN Field

set
.H2~_

1

I

1

I

I

2

2

2

2

2

3

Input Output
~Q!l!~_ Rg!!!g£!2 _________b~UHl~!! l1Qgg_ CO!!.!:!..

18 ALPHA 	 TDY Equipment

Location

11 COORD Geographic Location
(Lat-Long) of TDY
Equipment

2 ALPHA CTRYS 	 Country Code where
TDY Equipment is
Located

2 ALPHA CTRYS 	 Geopolitical Area
Code where TDY
Equipment is
Located

15 ALPHA 	 Country Name for

TOY Location

3 ALPHA 	 Secondary Equipment
Classification

10 ALPHA 	 Secondary Equipment
.Model Number

18 ALPHA 	 Secondary Equipment
Popular Name

4 NUMER 	 Num ber of Equip­
ments Possessed

4 NUMER 	 Number of Equip­
ments Authorized

4 NUMER 	 Plan Identification
Number

i, 	 47

I
l
i
!

INTRODUCTION TO FILE CONCEPTS

Input Output
Element Element set

£Q!!!.:.- Bgl!H!£!§- ---­
!~J!~___ _II.E!l-- l!Q:.-- l&!!9.th !1Qg~- ~Q!!!'!'

Plan status Code
I AL.PHAPLEAC Field 3 for Unit

DTGOS Date-'fime Unit
3 10 ALPHA DRGISPLDTG Field Adhered to Piau

Expected Plan
3 1 ALPHAPLFST Field Status Code

DTGIS DTGOS Expect Date-Time
3 10 ALPHAPLFDG Field Unit will be

Committed to Plan.

Plan Response TimeALPHAPLRT Field 3 6

Transportation
6 ALPHAPLTRT Field 3 	 Staging Time

Treaty Code of UnitALPHATRTY Field 4 6
Affiliation

Senior Officer/PO
5 18 ALPHANAME Field Name

Senior Officer/PO
4 ALPHARANK Field 5 nank

Serial Number6 ALPHA5SEBNUMR Field
Service Branch Code

5 1 ALPH ASERVICE Field

Unit Assignment

5 20 ALPHAASSGN Field

Specialty Code
5 ALPHASPCODE Field 5

subo.rdinate Unit IJrc
6 6 ALPHASBUIC Field ,~

48

http:II.E!l--l!Q:.--l&!!9.th

• •

Input outputElement Eleme~t set

C.Q!!!~_ Remarks
l!2~_ 1~!!g!!! l1Q~!!_ £Q!!:!.:.!!.I!!.!!--- _IIl!g__ 	 ------------­

SBFLG Field 6 6 AL.PHA 	 Reason for
Subordinate UIC

unit Remarks./REFER Variable
comments inSet
Unformatted Form

4.3 Subroutine/Table Description

This subsection describes the conversion subroutine~ and

tables used by the sample file.

4.3.1 Table - RCMDS

The table RCMDS is used for input data conversion. It
viII accept up to a six-character argument and produce a
single character code as a function. The table is used for.
converting names of unified/specified commands to single­
character codes. A sample of the table contents follows:

!RGU.tlENI 	 r1!!i£!!QJi

USCG 	 E

J
USAG
MUSMC
UJCS

••

•
 •

NORAD 3

8
SAC

4.3 •. 2 Table - OCMDS

The table Q£~D~ is used f~r output conversion. It
accepts a single-character code. representing a unifiedl
specified command and expands it to a name of up to six
characters. The table is used with the input conversion
table, ReriDS. A sample of the table contents follows:

49

• •
• •
• •

•
•

•
•

INTRODUCTION TO FILE CONCEPTS

!BJ1YJt~NT 1!!!i~I!Q!

M MARINE
N NAVY
R RCAF

H AN!AC
2 LANT
4 EUCOM
7 STRIKE

4.3.3 Table - CTRYS

The table CT!!!~ is used f3r output conversion. It
accepts as an argument a tvo-character code and expands to
a country or geopolitical area name which may be . up to 15
characters' in length. A sample of the table contents
follow:

!R!!!H1!!I f.Y!CT!2!

AC ATLANTIC OCEAN
AL ALBANIA
AT AUSTRALIA
BD BERMUDA ISLANDS
CB CAMBODIA
EG EGYPT
GU GUAM

••
TH THAILAND
19 LOUISIANA
37 OKLAHOMA
47 VIRGINIA
65 PACIFIC ISLANDS

4.3.4 Table - ACTVS

The table ACTV~ is used for output conversion. It
accepts a two-character code and expands it to state a

50

certain military ac~ivitl of ,up to 15 characters. A sample
of the table contents follows:

ARGUt1H! 	 f.Y.!~!IQli

ACT IV AT INGAC
'CIVIL DISTURBCD
COMBATCO
DEACTIVATINGDE
EXER/MANEtJVEREX
MAINTENANCEMA

•• -- •• SHOW OF FORCESF
SEARCH/R.ESCUESR
TRAININGTR

4.3.5 Table - UNLVS

The table YN~VS is used for output conversion. It
accepts up to a three-character code and expands it to state
a unit's level using up to 15 characters. A sample of the
table contents follows:

!RQY!1ll! 	 £:Y!f~IIQ!!

ACADEMYACD
ANNEXANX
COMPANYCO
DIV ARTILLERY.DAY
NUMBERED FLEETFLT
HEADQUARTERSHQ
HOSPITALHSP
MERCHANT SHIPMER
PLATOONPLT
RGT COMBAT TEA[1RCT

••

51

INTRODUCTION TO FILE CONCEPTS

SHIP YABDSYD
TASK FORCETF
US SHIPUSS

Subroutine - DTGIS

Tne subroutine QI~la is used for input data. conversion.

It accepts a 12-character data item which is a Date-Time
group and converts it to a lO-character form suitable for
sorting dates in sequence.

The input format to the subr~utine is:

DDTTTT5H'lMM II

where
DD = Day of Month
TTTT = 2400 Hour Time

Flag Indicating Greenwich TimeS =
MMM Month (Jan, Feb, --- Dec)
yy Year (6S, 66 ---) •.=

The output format from the subroutine is:

IIMMDDTTTT

where
II = Year (65, 66 ---)
MM .- Month Code (Jan=Ol, Feb=02)

DO - Day of Month

TTTT = Greenwich Time.

52

4.3.7 Subroutine - DTGOS

The subroutine DTGOS is used for output conversion. It
accepts as input the 10-character Date-Time group produced
by DTGIS and converts it to the 12-character source format.

53

Jlt,li.:
)"':1
~" I
~ INTRODUCTION TO FILE CONCEPTS
J:t~ i:
1{li II
,,"1

'jl:!::\

INTRODUCTION TO FILE CONCEPTS

Section 5

GLOSSAR Y

This section contains a list of terms commonly used with
the NIPS 360 FFS. A brief description is supplied. Most of
the terms the user may come across which are related to
5/360 hardware and standard software are not repeated here
since they are adequately discussed in the IBM SRL

publica tions.

a. A physical record (separated from other
Block records by inter-record gaps) which

contains multiple, logical data records.
Refer to blocking of records.

b. 	 A group of computer words considered
as a unit by virtue of their being
stored in successive storage locations.

A field which is the first four charactersBlock Count of each block of file records, containing
(Field) the number of characters in the block. Do

not confuse with record character count.

The combining of multiple logical recordsBlocking of into one block of information on tape toBecords decrease the time wasted due to accelera­
tion and deceleration of tape and to
conserve space on tape.

A special geographic retrieval operatorCircle Search
which permits selection of file records

54

component

Control Field

Control Group

Data Base

Data File

Data set

Data Record

FFS

FFT

Field

Field Name

by determining if a point carried in the

file record falls within a circle speci­

fied as the search criteria.

A major functional unit within NIPS 360 FFS.

Refer to record control field.

Refer to record control group or record 10.

The collection of data files (data sets)

used under the system.

Also called FFS data file or formatted

file or file. A collection of data records,

called file records, which can be logically

grouped on the basis of subject matter.

Since the organization of the data is

formatted, the file is called a formatted

file.

NIPS 360 term essentially implying a data

file. Used to describe a collection

of data records, stored in common, and

accessed as an entity.

As a general term, means a group of related
fields of data treated as a unit. Often
used to mean FFS file record (refer to
file record).

Formatted File System.

File Format T~ble.

The smallest defined logical unit of data
in a record handled by the PFS
consisting of one or more adjacent chara~ters.

The synonym or mnemonic assigned to
represent a discrete area (field or group)
in the data record.

55

INTRODUCTION TO FILE CONCEPTS

File

File Format
Table

File ID

File Mnemonic

File Record

FIT

Fixed Field

Fixed Group

Fixed set

FM

Format

Generally a nonspecific term meaning an
organized collection of information directed
toward some purpose. However, in this
documentation, file means FFS data file,
unless otherwise qualified. {Refer to
data file.}

A collection of records which completely
describes the format of the FFS data file.
They are generated by the File structuring
component. There is one FFT for each data

file.

Name of the FFS data file.

Same as file ID.

(Also called data record.) A group of

related fields of data. The file record

is formatted - that is, each element of

the file record has been defined, identified

and assigned a relative position. Each
file r~cord has a fixed set which contains the
record ID. The file record may also contain
a number of periodic sets and/or variable

sets.

File Information Table.

A field defined in the fixed set of a file

record and which must appear once and only

once in the file record.

Refer to group.

That portion of a file record consisting

of all the fixed fields/groupS of the file

record.

system component -- File Maintenance.

A predetermined arrangement of characters,
fields, or other data. A format does not

56

/

Formatted File

FR

F5

Group

High-G.rder
Position

HOP

Input
Descriptor

Input File

Input Group

Input Group
Control Fiel d

describe the data, but describes its

organization.

Refer to data file.

System component File Revision.

System component File Structuring•.

A collection of one or more adjacent fields
of the same type which are related. A
group is capable of being processed or
otherwi~e manipulated as a unit. The
system may treat a group the same as ~
field. The fields within a group in no
way lose their individual identities and
may be treated as if they were not grouped.
If fixed fields are grouped, the group is
a fixed group. _ A periodic group is a
grouping of periodi~ fields.

The leftmost (most significant)

position of a field.

High-Order Position.

A deck .of cards which describes the

external formit of iriput data for the

FM component.

A card or tape file which contains all
or a port~on of the data needed by PM
to update a N~P5 data file (also known as
a transaction file).

All of those input records containing
information to be extracted for the
purposes of creating or updating a single
(the same) file record.

An artificial control field or an actual
data field (or fields) by which the input
file is sorted or manually arranged prior

57

I

I

!1

INTRODUCTION TO FILE CONCEPTS

to input to the system. This is done so
that all input records belonging to the
sa me input group (i.e." pertaining to the
same file rec~rd) will be grouped together.

A single card (or tape record) in an inputInput Record
file.

The code used to distinguish one inputInput Record record type from another.Type code
A user-supplied data conversion/validationInput Table table or subroutine utilized to convertsubroutine data from its external form to an,internal
form required by the user.

An 05/360 partitioned data set used to store
Library programs., In NIPS, libraries are also used

for user subroutines, tables, RITs, and re­
trievals.

An executable load module generated by FM fromLogie Statement user logic specifications to perform the file
update function for one transaction type.

!I A collection of data elements which isLogical Record distinct and complete ,as interpreted by!I
i: the system. One physical record (block)
'I
"

I' may contain many logical records.

Low-Order position.LOP
The rightmost (least significant)Low-Order position of a field.position
Generally refers to a symbol or name which

Mnemonic stands for an equivalent machine-oriented
value.

Refers to the method by which data is
ftode stored in a data record (i.e., alphameric,

numeric, or c~ordinate).

58

Module

Multilreel File

Multivolume File

NIPS

O.P

OS/360

output Table/

Subroutine

Periodic Field

Periodic Group

Periodic Set

Phase

Polygon Overlap

A term used t~ refer to any mix of
components 6 sections, phases, routines, ·or
subroutines.

A file so large as to require more than one
physical reel of tape for storage.

Same as multireel file except it may pertain
to either tape reels or disk packs.

NMCS Information Processing System.
,

System eomponent -- output Processor.

System/360 Operating System.

A user~supplied data conversion tablel

sUbroutine which is used to convert data

from an internal system form to an

external form required by the user.

A field defined in a periodic set of a

file record, and which may appear more than

once in a file record.

Refer to group. One or more contiguous
fields of the same periodic s~bset,
handled as one logical entity.

A collection ~f periodic subsets having
the same format.

A collection of routines and/or subroutines
which are treated together as a module
loaded in core together (also may be
referred to as an overlay).

A special geographic retrieval operator
which permits selection of file records on
such criteria as a point falling within an
area, two areas overlapping, a line
intersecting another line, etc. See RASP
User's Manual.

59

INTRODUCTION TO FILE CONCEPTS

PSSQ

QDF

QUIP

QRT

RASP

Record Character
Count (Field)

Record Control

Record ID (also
called Record
control Group or
Record Key)

RIT

Routine

section

section/Phase

set

Periodic subset sequence number.

Qualifying Data File - An output of RASP;
this data set. together with the QRT
performs the function of providing an
"Anwer" file. See RASP user's Manual.

system component -- Quick Inquiry Processor.

Qualifying Record Table - See QDF.

system component -- Retrieval and Sort processor.

A field which is the first two characters

of every logical record. It contains the

count of characters in the logical record.

Refer to Record 10•

. The initial data field(s) of the fixed set
which make each file record in a file
unique, and are used to identify the file
record. The file records in a file are
sequenced according to the contents of
their record control group or record 10.

Report Instruction Table generated by

OP to direct output format.

A logical collection of subroutines and

instructions, and is a logical portion of

a phase.

A named phase(s) of a component.

When there are no phases within a section,

the section, a single operation, is termed

a section/phase.

A collection of fields arid groups of the

same type.

60

SODA

Suhroutine

Subset

Table

TP

Transaction

Variable Field

VSCTL

VSET

System component -- Source Data Automation.

A collection of machine instructions per­
forming a simple, single logical function,
and is a logical portion of a routine.

A periodic subset. A segment of recurring
information, composed of periodic fields.

A collection of argument-function pairs

organized for efficient searching.

System component -- Terminal Processing.

An input record to the FM or SODA components
which contains data file update information.

Each set in a record format may have one
variable field defined. When defined .it
carries no size specification and may be
used to store unformatted data of variable
lengths.

Variable set·control field.

Variable set.

61

INTRODUCTION TO FILE CONCEPTS

Appendix A

PHYSICAL DESCRIPTION OF THE NIPS 360 FFSDATA
FILE AND FILE FORMAT TABLE

The material contained in this appendix is guite
technical and should not generally be needed by the average
use.r of the NIPS 360 FFS. However. it is presented here for
those users who are interested in the actual manner in which
data is referenced and stored ~n a file. In addition it
will aid users who, having dumped the file in image form,
desire to locate specific items of information.

The NIPS 360 FFS data file and its associated File
Format Table are stored as a DATA SET. The ·term DATA SET is
the 05/360 terminology used to refer to a logical collection
of data which is accessible to the system through a unique
name.

A.l Data set Organization

The NIPS 360 FFS data set is built and maintained using
the 05/360 Indexed Sequential Access Method or the
Sequential Access Method. Logical records in the data set
are variable length and may be up to 1,000 bytes in length.
These logical records. are blocked into physical records
which have a maximum size of 1,004 bytes. When the data set
is indexed, each logical record has a key field used to
uniquely identify the record. The generalized format of a
logical record in the data set is as shown:

r:-r:]-:-----[------:-----------------]LU.12__.______ __ __.__________

A - Four bytes used for OS control; contains length
of record.

62

B 	 One byte used as a flag to contain a delete code
when the record is to be removed from the data
indexed set.

C - This field is the record key containing data to
uniquely identify the logical record in the data
set.

D - This portion of the logical record contains the
actual data.

The data set contains several categories of information
in its logical records. The primacy purpose of the data set
is to contain the user's data file which requires the bulk
af the space used. Also contained in the data set is
supporting information consisting of the FFT and the PM
logic statements used during file maintenance. Discussion
in this appendix is limited to describing the format and
organization of the FFT and data file.

The first character in the record key of each logical
record in the data set is used as a code indicating the type
of information carried. Being first in the key, it is also
used to cause the data set to be sequenced in ascending
order based on record types. The general order of record
types is as follows:

a. 	 File Format Table records

b. 	 FM Logic Statement records

c. 	 The statistics Rec~rd for ISAM data files

d. Segment Records for Segmented SAM data files

e. User's Data File Records

The character codes used are as follows:

B - Classification Record FFT

C - Data File Control Record

63

i

I

l

INTRODUCTION TO FILE CONCEPTS

F - Element Format Records FFT

L&M - PM Logic Statement Records

N· - Statistics Record

P - Segment Records

R - User's Data File Records

A.2 Data File Records

The format and organization of records making up the
da tao file are discussed in this section.

Each user data record will consist of one or more
logical records in the OS/360 data set. There will be a
logical record for each f~xed set and each subset in a
periodic set of the user data record. The major key field
for all logical records related as a single user data record
will be the same and will contain the record control group.
However, the minor key fields will differ based on set type
and subset number. Within the data base records, the
storage 0.£ information will be in two types of notation.
For alphameric fields, the information will be stored as
EBCDIC characters (i. e., one byte for each character). The
numeric fields will be stored as binary words (i.e., four
bytes used in binary notation). DuringFS, the location of
binary fields within the logical data record will be
controlled so as to conform to boundary alignment
requirements when tbe data record is brought into internal
memory.

When the FS component is executed, the format for the
logical records is created. All user-defined record
elements for the fixed set will define a format for a
logical record used to contain the fixed set. All user­
defined record eleiitents for a· periodic set will define a
format to be used with each logical record which contains a
subset of data and so forth. In addition to user-defined
elements of a logical record, some elements are

64

automatically generated by the FS component and given
special names. They are usef for system control. Each
distinct element in a logical ~ecord (user and system
defined) has a corresponding logical record in the FFT which
contains information completely iescribing the attributes of
the element. The element name is used in the key of such
records.

The remainder of this appendix illustrates the typical
format for data file records when they reside in the data
set. All elements which would be generated are shown.

Elements which were directly defined by the user with
source statements using the FS compone~t are flagged.with
the character "S" (see format which follows) to represent
the generalized case•. Some of the system generated elements
have names which start with .the character ".". This is used
to represent .a byte containing all zero bits. When the
format for a user's defined set is tra~slated into the
format for a logical record, all numeric fields (binary
words) are blocked together. This is to ease the
requirements for binary field boundary alignment when the
logical record is resident in core. That is, data can be
worked using machine instructions directly. To accomplish
this, whenever the logical record is read into core memory~
the record is started on a full word boundary address.
Then, if it is necessary, slack bytes are generated by FS
between the key and the block of binary words in the logical
record to force ·the binary block to begin on a fullword
boundary in core.

When FS defines the format for a logical record, any
needed slack bytes are accounted for in the record
descr i pt ion.

65
:

I
l

NTRODUCTION TO FILE CONCEPTS

j9 l!Q l!2 J1Q l!!l 11.11 _1!!1. j111._ l~l.
S

B S 5 S S 5 s S S 5 5
t 	 t f t

(15) (16) 	 (17)
(14) . ~Record Key--i I- Dinar1, Field Blocki

fllflJ'llyl~LI~~~----1!11-_--_-_-------------------~

LL _!Ll_~_ --.l-l--1---1------12--------------------------J
t 	 . + f -i
(14) 	 I- -' (15)(16) (17)

Record Key I

66

(1) 	 Record Size Pield
Length - Four bytes
contents - First two ~ytes are used as a binary

J
halfword to indicate logical record
length. The last two bytes are reserved
fo.r OS use.

{2) Deletion Code Field
Length - One byte
Contents - Field is set to all binary one!s by the

system if the record is to be deleted
from the data set under the control of
the I/O supervisor. otherwise contents
are immaterial. Not accessable by user.

The "following items (3) through (6) are treated together
as the key.to the logical record and contents are unique in
the da ta set.

(3) Record Type Field
Length - One byte
contents - The character "Rn to distinguish data

records within the data set. System
generated name for this field is +FIL.

(4) 	 Record Control Field
Length Variable
contents - Contains the data record control g~oup

r

which logically ties all logical
records, together in the data $et
which are.related to each other (i.e.,
the fixed set with all its associated
periodic subsets). This field size is
specified by the user for a particular
data set. If the contents for a
particular data record are shorter
than the field itself, the contents
are left-justified. The system generated
name for this field is +RCN.

(5) 	 Set ID Field

Length - One byte

67

INTBODUCTION TO FILE CONCEPTS

Contents - Uses binary notation to ident~fy whether
the logical record is fixed or
periodic in use. If periodic, ltvill
identify which set it belongs to.. The
scheme used for identification is ­

'1~~~~~~ - Fixed set
~J4'JlJJJJfll - 1st Periodic set

•
•
•

11111111 - 255th Periodic Set

The system generated name for·
this field is +PCN.

(6) Subset control Field
Length - Minimum of four bytes
contents - When a periodic set does not have a

secondary 10 specified, these four
bytes are used as a number (unsigned
zoned EBCDIC) for assigning sequence
numbers to the subsets.

When a periodic set has a field(s)
specified as a subset control group,
the field{s) will appear in the access
key and the key field length will be.
adjusted to accommodate it. When a
periodic set has a control field
de.fined which is greater than four
bytes, then the length of this key
field is enlarged to accept the
control data, and this new size vill
appear for all periodic sets.
periodic se ts wh ich ha ve no can trol
field will have their sequence
numbers left justified irt the field.
Fixed sets will have binary zeros
in this field. If necessary, any

,~ 	 padding to the right of the decimal
sequence number will .be with binaiy
zeros.

68

The system generated names for
this field are PSSQ(n) and +SC{b)
when no subset control group is
defined for the periodic set. If
a subset control group is defined,
the only system generated name is
+SC(b) •

(Note (b) stands for a byte using
binary notation to express the set
number.)

(7) 	 Length of Binary Data Block
Length - One byte
contents - Number ~f full words making up the

binary data block in the data record
(f ield 9 and 10) expressed in binary.
system generated name for this field
is +BSZ•.

(8) 	 Logical Record padding
Length - Variable number of bytes.
contents - Binary zeros for the number of bytes

necessary for field nine to begin on
a full word boundary in core memory.

(9) Size 	of Variable Field
Length - Four bytes (binary fullword).
contents - Size of variable field if existing.

Otherwise all binary zeros. The
system generated name for this field
is VSZ(n). The system name VSCTL may
also reference this field. It is
the first variable set created.

(10) User-Defined Numeric Fields
Length - Each is four bytes (binary fullword)
contents - User-supplied numeric data.

;(11) User-Defined Alphameric Fields and Groups·
Length - Variable length·using EBCDIC characters.
contents - User-supplied alphameric data •.

69

INTRODUCTION TO FILE CONCEPTS

(12) 	 Variable Fields (fixed or periodic set)
Length - Variable length using EBCDIC characters.
contents - User-supplied alphameric data.

ell} Variable Field (Defined Variable set)
Length - Variable as specified on the 'SET

source language statement in FS.
contents - User-supplied alphameric data.

(14) 	 The first byte of the data record will be on fullword
boundary alignment.

(15) 	 The first byte of the binary word block of a data·record
is adjusted by the padding of field (8) so as to be on
f ul1 word boundar y alignment.

(16) 	 The low-order byte of the rightmost binary full word is
addressed byentr·y number (16) in the control record
for a fixed set and by entry number (19) in the control
record for a periodic set.

(17) 	 The first byte of a variable field is referenced by the
appropriate user-assigned name as found in the element
format record.

The following discussion defines in greater detail the
operation of the system generated fields PSSQ(n) and +SC(b).

The minor sort field of the key for a logical record is
defined as the subset control Field. For data files defined
with periodic sets in which no subset control groups were
required (data dependent), this subset control fi~ld will be
four bytes in length. Two system generated field names
(+SC(b) and PSSQn) will reference this field. Its contents
will be decimal numbers used for subset sequencing.

For a data file having mixed periodic sets ~.e.,
periodic sets without control groups and some with control
groups), the following conventions apply_ A pssQ(n) field
name will be generated only for those sets which have no
control group and reference is made to the first four high­
order bytes of the subset control field. A +SC{b) field

70

name will be generated for all periodic sets and will
reference only the signif~cant data contained in the sUbset
control field.

An example for discussion above, consider the case when
a data file has three periodic sets defined. Two of these
periodic sets have subset control groups which differ in
length. In the following format, each charactet represents
a byte.

71

INTRODUCTION TO

PIXED SET

PERIODIC
SET 1

(lO-charac ters
periodic
control group)

PERIODIC
SET 2

(5-cha.racter
periodic
cont rol group)

FILE CONCEPTS

~--------Record Key------------------~

~].-------------r-i-- ~£~£Ql-==~------_J

~, ~_!_A_!_A_A_!~ f-f_£~£_£_~£_£_£_____________~

A - Record 10 Value

B - Eight binary zeros indicating fixed set

C - All 10 bytes have binary zeros

A - Record 10 value

B - Binary content of byte is flfcfflflfcfflJ61
indicating 1st periodic set.

c- contains periodic control value~
The system generates the field
name +SC(b) for this 10 byte field.
"btl has the binary value JlJlJlflflflJll.

rT---------,--T-------r---------I--------·---J

/!iJ.LLA_LA_A_AJ§J£_£_f_£_f !L!LIL!LQ ------------(

A - Record ID value

B - Binary content o.t byte is f1~f1t,1flfllJJ
indicating 2nd periodic set.

c - Contains periodic control value.
The system generates the field
name t-SC(b) for this five byte
field. "bit has the value flflflflIlfllJl.

D - Remaining five bytes are padded
with binary zeros~

72

~-------- Rec~rd Key--~.--------------~- Subset Control ------..;.----f
pERIODIC
SET 3 I~.A~~~~~~~]~j~~~~~~I~~~~~~;~~~;

(NO per iodle ----------5
contra 1 group)

A - Record ID value

B - Binary content of byte is '1'~'~11
indicating 3id periodic set.

C - contains the subset sequence number.
The system generates the fieLd name
+SC{b) and PSSQ3 for this four byte
field. 'b' has the value ~1f1f1J11111• ..

D - Rem:lining six bytes are padded with.
binary zeros. Note that the length
of the subset control field in the
acess key for the entire data file
is dependent upon the largest
periodic control group defined.
All other sets have their values left
justified. Also the names+RCR and
+SC(b) are generated by the system
even though the user-supplied names
for the same fields•.

The following conventions concerning group definitions
during FS are used:

- An alphameric group containing all alphameric fields
will have all fields in EBCDIC character notation
(mode code "A") •.

- An alphameric group containing one or more numeric
fields will have these numeric fields generated in
zoned EBCDIC decimal notation (mode code "0").

- A numeric group containing all numeric fields will
have all fields generated in zoned EBCDIC decimal

73

INTRODUCTION TO FILE CONCEPTS

notation (mode code flD").

- A numeric group containing both al phameric and
numeric fields will not be allowed.

- Numeric fields or qroupsmay not be used as record
control or subset control groups. Only EBCDIC
characters may be used in the access key.

- A coordinate group contains fields in the binary
block of the logical records. Each field is a
binary word capable o.f conta.ining either a latitude
or longitude value.

A.3 File Format Table Records

This subsection "discusses in sequence the types of

records found in the FFT portion of the data set.

1.3.1 Classification Record

There is one cla~sification record in the 05/360 data

set. It appears- first, and its purpose is to carry the

,Qser-stipplied classification label defined when File
structuring was run. The format for the classification
record is:

C ~~r- ut------I· -----JIl-------J
. 	 IIXXI••• XI.LLr:J- . ---------- ---------------­

(1) 	 Record size field - contains X'104' (for files
structured under 360 NIPS), or X'108' (for files
cODve.rtedfroll 1410 to 360 NIPS)

(B, 	 Reserved for OS
(C) 	 Delete code field - contains X'OO'
(D) 	 Record type field - contains C'Bt
(E) 	 Classification contains classification literal

left-justified in a J2-byte field. Any padding to
right will be with blanks.

(F) 	 Slack bytes to bring record to a size greater than
a maximum key.

74

Data File Control Record

There is one data file Control Record in the data set.

It appears sequentially following the Classification Re~ord.

Its purpose is to supply information to the using FFS

component on the organization and format of the element

format records. In a sense, it provides the bootstrap

informati?B needed for a component to interpret correctly

the element format records. In addition it supplies basic

information on the organization of the resident data file._

The format of the data _file Control Reco_cd -and
description of its contents follow:

Group Repeats for each periodic set

(1) (2) (3)(4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)(16) (11)

[-]~-J--I-------Y---r]-lr-I--I--r--r--r-r--]----[--tl2l-f
_ __ _______1___ __ ~-- - -- --- -- -- --- ---- --- ---~

(1) 	 Record Size Field

Length - Four bytes

contents - First two bytes are a binary halfword

used to specify record length. _ The
last two are reserved for OS use.

(2) 	 Deletion Code Field

Length - One byte

Contents - All binary l's set by system if record

- is to deleted from the data set.
otherwise contents are immaterial.
Not accessable by user.

Il) Record Type Field

Length - One byte EBCDIC

Contents - The character 'ct.

(4) 	 Control Record Key Padding

Length - 254 bytes

contents - Binaiy zeros throughout all bytes.

Used to force the fixed information

75

INTRODUCTION TO FILE CONCEPTS

car~ied in the control record beyond
the largest access key that may be
defined. optional: May contain fC'
in high-order byte. See continuation
Record Techniques.

Note: The access key fo~ the control reco~d is made up of
field (3) and all or part of field (4) depending on the
length required for the data file •.

(5) High-Order Position of Record Control Group in the
Record Key of user data records (logical).

Length Binary halfword
contents - Location is relative to the high-order

byte of the record size field which
is based at zero. Varies in
continuation records.

(6) 	 Length of Record Control Group
Length. - Binary half word
Contents - Size of record control g~oup. Null

characters in continuation records.

(7) High-Order position of Set ID Field in the Record of User
Data Records (Logical) Key

Length - Binary halfword
contents - Location specification same as (5)~

Null characters in tontinuation
records.

(8) 	 Length of Set ID Field
Length - Binary half word
contents - Size of field (1 byte).

Null characters in continuation
records.

(9) High-Order position of Sub~et control Group in the
Record Key of (Jser Data Record (Log.ical)

Length - Binary halfword
CQ3tents - Location specification same as IS).

Null characters in continuation records.

(10) Length of Subset Can trol Grou p

76

.11

Length - Bina ry ha Ifword
contents - If no periodic set control group for

the data file has been defined, the
size will be four bytes, otherwise
the size of the largest periodic set
control group specified will be used.
Null characters in continuation records.

(11) 	 Number of Periodic Sets

Length - Binary halfword

contents - The number of periodic sets defined

for the data file is stated. If there
are none~ this entry contains all
binary zeros. If a continuation record
is used, the field in the continuation
record contains the number of sets
defined by this record.

(12) High-Order Position of Significant Data in the Element
Form at Records

Length - One byte us~ng binary notation
Contents- Provides the relative high-order

position of data contained in the
element-format records. Tbe first
byte of the element format record is
considered at a zero location. This
field is used because there may be
byte padding between the last character
of the access key and the first byte
of data contained in the element
format record. This will allow half
boundary alignment for the binary
entries in those records. .

(13) 	 Dummy Entry
Leng th - Three by tes
contents - High-order byte contains a 'e' if a

continultion record follows. Otherwise
contains binary zeros.

(14) 	 Length of Fixed Set Logical Record
Length - ,One byte using binary notation
Contents - Size in full words includes record

77

INTRODUCTION TO FILE CONCEPTS

size field, deletion code field,
~ccess key, and all d~fined fixed
length fields. In addition, it may
include some padding (binary zeros)
at end of set so that the entire
logical record will conform to full
word boundary alignment. Null
characters in a continuation record.

(15) 	 Number of Binary Words in the Fixed Set Logical Record

Length - One byte

contents - Number of fullvords in the block of

binary words which are contained in tbe
fixed set. Binary notation is used"
in this field. Null chllracters in
a continuation record.

(16) Low~Order position of Binary Block in Fixed Set (low-order
byte) Logical Record

Length - Binary halfword
contents - Location relative to the first byte

of the record size field which is
based at zero. Null characters in a
continuation record.

Note: The 	following fields in the control record are optional.

(17) 	 Length of First Periodic Set Logical Record
Length One byte using binary notation
contents - Size in fullwords as was specified

for field (14) above.
!

(18) 	 Number of Binary Words in First Periodic Set Logical 1
'IRecord

Length One byte I
contents - Number of fullwords in the block of

binary words which are contained in j
the first periodic set. Binary
notation is used in this field. I

(19) 	 Low-Order position of Binary Block in the First
Periodic 	Set Logical Record

Length - Binary halfword

78

I

contents - Position specified same way as for
field (16) above

Note: The fields (11), (18), and (19) may be repeated as a
group to define as many periodic sets as are required. Up
to 255 periodic sets may be defined. While reading this
appendix, it may be best to study the data record format
for logical records contained in this appendix. For files
containing in excess of 179 sets, see Continuation Record
Techniques at the end of this appendix.

A.3.3 Element Format Records

Every element in a user's data record has a special
record in the data set defining its location and attributes.
These records are known as Element Format Records. Each is
a logical record containing in its key field, the name of
the element that it describes. The records are generated
along with the classification and control records by the P5
component. In addition to user-defined record elements
(from file structuring source statements) additional
elements appear .in the logical record format as illustrated
in SUbsection A.2. These elements are generated
automatically during structuring for internal control
purposes. They have special names and their own
corresponding Element Format Records. The system-generated
elements and their purpose are listed below:

a. 	+FI L This element contains the first character in
the logical record key which contains "R."
This character is common to all data records
and is used t3 batch all data records as a
block within the 05/360 data set.

b. 	 +RCN This element contains the total record control
group as found in the logical record key_

c. 	+PCN This element contains the set ID field in
the key of the logical record.

d .. +5C(b) 	 This element redefines the subset control
group in the key for a specific subset logical

79

INTRODUCTION TO FILE CONCEPTS

e. +BSZ

f. pssQ(n)

g. VSZ (n)

record. The fourth byte in the name(b) w~11
use binary notation to reference a specific
set; for example:

~~~~~~~ Fixed set 
~"fI~JJ"1 - 1st Periodic Set 
,,~~~~l~ - 2nd Periodic Set 

This element w~II occur immediately after the 
key in a logical record II byte in length) and 
will. specify, via binary notation, the number 
of binary fullwords within the logical record's 
binary data block. 

This element definition is generated only for 
those periodic sets which have not been defined 
by the user to have a subset control field 
(based on a data value). It identifies a four 
byte field in the key of a logical record used 
for subset sequencing within a periodic set. 
The term (n) represents a one-to-three EBCDIC 
character suffix used for periodic set identi ­
fica t ion ifor exa mple: 

PSSQ25 will reference the subset 
sequence field for a logical record 
of Periodic Set 25. 

This element is the first binary word in the 
binary data block of a logical record (fixed 
set or periodic subset). This binary word 
will indicate the number of characters currently 
contained in the logical record's variable 
field. The characters indicated by (n) will 
refer to the periodic set involved and are 
stated using EBCDIC numbers. For example: 

VSZ - Fixed Set 
VSZl5 - 15th Periodic Set 

If there is no variable field 
record, this field (4 bytes) 
binary zeros. 

tor 
will 

a logical 
contain 

80 




h. VSCTL This element is a redefinition of VSZ(D) 
element for the logical record containing 
the first defined variable set. 

Note: The system generated fields (a) through (e) 
may only be used internally by the PFS component. 
No analyst/user may communicate to component using 
these names. In contrast. the field names PSSQ(n). 
VSZ{n) and VSCTL may be used by the analyst as a 
method of controlling this particular run. The 
use of the character (+) in the .above names means 
a byte consisting of binary zeros. For a complete 
understanding of the use of the generated field 
names, it may be best to refer to the description 
of the data record found in section 2. 

The remainder of this section illustrates the format and 
contents of the element format record•. 

aepea ted Group Possible 

I 

tr: 
1---- (3) 

(1) 	 Record Size Field 
Length - Four bytes 
contents - First two bytes make up a binary 

halfworj providing the size of the 
logical record. The last two bytes 
are reserved for as use. 

(2) 	 Deletion Code Field 
Length - One byte 
contents - All binary Its set by system if the 

record is to be deleted from the data 
set by the IIO supervis6r. Otherwise 
contents are immaterial. 

81 



INTRODUCTION TO FILE CONCEPTS 

'[ 

(3) Record Key 
Length 	 Variable EBCDIC characters. Length 

is standard for entire data set and 
is dependent on the user specifica­
tions concerning the size of the 
record control group and the periodic 
control group (if defined). 

Contents -	 See (4) and (5,. 

(4) 	 Record Type Field 

Length One byte EBCDIC 

contents - The character "F." This code defines 


the ~ogical record and an element 
format record. 

(5) 	 Element Name 
Length Variable ,length EBCDIC characters. 
Contents Data record element name left ­

justified within this portion of the 
access key. If the element name is 
less than seven characters6 

it is padded to the right with blanks 
until a total size of seven is reached. 
After that, any remaining key padding 
is done with zero bits. See Continua­
tion Record Techniques at end of 
section for modifications on continua­
tion records. 

(6) 	 Bdundary Alignment Byte 
Length - One byte if necessary 
Contents - This is a slack ,byte which may appear 

in the element format record. This 
is used as padding to force all follow­
ing fields in the record to observe 
half-word boundary alignment. Entry 
12 of the control record is used to 
point to the location immediately 
following this byte indicating the 
start of record data. (High-order addres! 
of entry 7.) 

82 




I 

(7) 	 Dummy Parameter 
Length - Pour bytes 
contents - Ndll characters normally. 

Contains 'C' in high-order byte in 
continuation records. 

(8) 	 Element set Identification 
Length One byte in binary nota tion 
contents - Jlf1JlJl9f1f1f1 - Fixed set 

J1f1J1J1f1J1J11 - Periodic set I 
JlJ199J19lfl .. - Periodic Set 2 
Etc~ 
Not used .in continua tion records. 

(9) 	 Element Type identification 
Length One byte using binary notation 
Contents - The element definition is accomplished 

by the presence of bits in certain 
locations of the byte. A bit turned 
on will contain a "1." A bit turned 
off will contain a."O." The format 
of the byte is as follows: 

83 




INTRODUCTION TO FILE CONCEPTS 


Bit 
!Q~ g 1 2 3 4 5 6 7 

9 	 ON - Field ___Q!L=-Si!:Q.Y£________________________ 
I 	 ON - Field or group is used for record or 

subset control. 
____QIL=-HQ!!=£Qlll£QL.Y.2~________________ 
2 ON - System generated field/group 
____OFf_=_!!§~=~~!.!n.g~_fielgLg!:Q1!E_______ 
3 ON ~ Field/group may not be used by the 

analyst. 
____-2ll_::_fie!gLg~2!llL..ia_.!!.!lI!l§!!i£!~g____ 
4 ON - Fixed Length Field 
__Q!L::._li2t 	 ______________F!l~L!&MiL 

5 ON - Variable Length Field 
____-2!L::._1!9J!::Y![iab!g_!.~!!9.!!l___________ 
6 ON - Variable set field 

____-2U_:. !!on=.Y~£i~l&-2.e t fi~ld___________ 

7 	 Always }H. 

i 1 2 J 456 7 
i 1 II @ 1 " i i 

The file format record describes the user 
d~fined record control group. The field 
is not used in continuation records. 

84 


http:2ll_::_fie!gLg~2!llL..ia


The hex values of this byte for all element 
types are summarized below. 

A. system Generated Elements: 

+FIL 
XIFS'+RCN 

+PCN 
+SC(B} 

VSCTL X'AS' 
VSZ(n) 

PSSQ(n) - X' ES' 

+BSZ 

B. User-Defined Elements: 

Noncontrol field - X'88' 
Noncontrol group - X'08' 
Variable set name - 1'82' 
Variable field - X'84' 
Control field - X'CS' 
control group - Xl 48' 

(10) 	 High-Order Location of Element in Logical Record 
Length - Four bytes using EBCDIC notation 
contents - Location is relative to the high-o.rder 

byte of the record size field which 
is based at zero. Null characters 
in continuation records. 

(11) Length of Element in Logical Record 
Length - Three bytes using EBCDIC notation 
contents - (A) Length is specified for the 

number of alphameric characters 
represented. For alphameric 
mode elements (A), this will be 
the actual number of bytes 
appearing in the data record. 
For numeric mode elements (B), a 
binary word (4 bytes) will appear 

85 



INTRODUCTION TO FILE CONCEPTS 


(B) 

IC) 

(D) 

in the logical record regardless 
of the length specified. For 
decimal mode elements (0), this 
value will be the actual number 
of bytes in the logical record. 
See paragraph (12) below for a 
discussion on elemen t modes. 

If this is a variable field, the 
entry will contain the number of 
characters per line to be printed 
during output. 

If this is a variable set field, 
the length is as specified in the 
VSET FS statement. 

Coordinate mode elements are 
handled in a special manner. 
The size appearing in (11) depends 
on certain circumstances. The 
element format records generated 
to define coordinate fields/groups 
are similar to other user-defined 
fields/groups with the following 
exceptions noted: 

ALL FIELDS defined for 
coordinate use will carry 
the external decimal· 
length value (i.e., 
length as defined by user 
in the FS FIELD 
statement) in the element 
format as parameter (11). 
All GROUPS defined for 
coordinate use will carry 
the external decimal 
length value (i.e., the 
sum of the user specified 
length for each field 
defined in the group) in 
the element format 

86 




record. Por example, if 
POINT is defined as a 
field of length 11, 
representing both 
latitude and longitude, 
the length carried in 
entry 11 of the element 
format record will be 11. 
If POINT is defined ~s a 
group of two fields of 
length 5 and 6 
characters, the length of 
the group will be 
specified in the element 
format record as 11 
(representing the sum of 
the two fields). 

Three cases and their handling during FS 

Case 1 - ~ user defines a single coordinate field 
intending to store both latitude and longitude 
values in it. The field will be either .11 or 15 
characters in length depending on the precision 
desired. 

The FS component will cause a single element format 
to be built with the name as supplied by the user. 
However, this record will define two adjacent 
binary words in the block portion of the logical 
record, and will address the high-order byte of the 
left-most word. The length of the coordinate field 
will be specified as either 11 or 15 characters as 
defined by the analyst in parameter 11 of the 
element format record. 

Case 2 - A user defines two fields of length 5(7) 
and 6 (8) characters intending to identify latitude 
and longitude separately. In addition, a group is 
defined as containing these two fields. 

87 



INTRODUCTION TO FILE CONCEPTS 


The FS component will cause two adjacent binary 
fields to be generated, with an element format 
record for each. The contents of the element 
format record describing each field will be as in 
case one, except that the field length entry (tl) 
will describe only the user-specified length for 
that field. The group format record will contain 
the sum of the user-specified length of each field 
defined in the group. 

Case 3 A user has defined several sets of 
coordinates by the method of case one or case t~o~ 
as discussed previously. In addition, he define' 
this collection as a group. 

In addition to the element format records gener~ted as 
in cases one or two, the FS component will generate a 
group format record describing this collection of 
fields. Parameter 11 in the group format record will 
state in bytes the space needed for binary words. This 
field is filled with null characters in continuation 
records. 

(12) Element Mode 
Length 

Specification 
- One byte using EBCDIC notation 

contents - Alphameric mode element. 
Numeric mode element. 
Coordinate mode element. 
Decimal mode element (this occurs 
when numeric fields are included 
within a group definition). All 
system-generated elements are 
defined as alphameric mode. 
Null characters in continuation 
records. 

(13) 	 Input Subroutine Conversion Name 
Length - Eight bytes EBCDIC 
contents - Subroutine name left-justified. 

Zero bits if no conversion on input. 
Asterisk (*) left justified if element 
is coordinate mode ~nd has external 
length of 5, 6, 7, 8, 11, or 15. This 

88 




invokes automatically a standard 
system conversion subroutine. 
Null characters in continuation 
records•. 

(lij) output Subroutine Conversion Name 

Length Eight bytes EBCDIC 

Con tents - Subrouti ne na me left- justified. 


Zero bits if no conversion on output. 
Asterisk left-justified, same as (l3). 
Null characters in continuation 
records. 

(15) High-Order Location of element label in this 
format record. 

Length - Binary halfword 
Contents - Location specification same as (10) 

if label present. 

All zerl hits for no label. 

Null characters iri continuation 

records. 


(16) 	 Length of element Label in this element format record 
Length - Binary halfword 
contents - Size if label exists. 

All zero bits if no label. 

Null characters in continuation 

records. 


(17) High-Order Location of Edit Mask this Element Format 
Record 

Length Binary halfword 
Contents - Location specification same as (8) 

if pattern assigned to element 
during file structuring. 
All zero bits if no pattern. 
Null characters in continuation 
records•. 

(18) 	 Length of Edit.Mask in th~s element format record 
Length - Binary halfword 
Contents - Size if pattern assigned to element 

during file structuring. 

89 



INTRODUCTION TO FILE CONCEPTS 


All zero bits if no editing is used. 
Null characters in continuation 
records. 

Note: When edit masks appear in element format records, 
they are in FFS edit pattern form. 

(19) 	 Size of Element on Output 

Length Binary b.alfword 

Contents - This field contains the size (in 


bytes) for output. 
If output conversion is used, the 
size of the subroutine output is 
provided.
Null characters in continuation 
records•.. 

(20) High-Order Location of the string of Field Names in 
the Recotd Kaking up the Group 

Length Binary half word 
contents - Location specification same as (10) 

if required.
All zero bits are used if entry is 
not a group. 
Null characters in continuation 
records. 

(21) 	 Number of Fields Kaking up the Group 
Length - Binary halfword 
contents - size if requirement exists. 

All zer3 	bits if not required. 

All the following entries are optional and~re used if required. 

(22) 	 field Label Used for output
Length - Variable (EBCDIC Character) 
Contents - User-assigned label name 

Not used 	 in continuation records•. 

(23) Edit 	Mask Pattern 
Length - Variable (EBCDIC Characters) 
contents - Edit pattern.

Not usea 	in continuation records. 

90 




~HTRODUCTION TO FILE CONCEPTS 

(24) Field Name within Group 
Length - E~ght bytes EBCDIC 
Contents - Field name left-justified 

(2~ High 	Order Location of Pield in Logical Record 
Length Four bytes in EBCDIC notation 
Contents - Location specification same as (10). 

(26) Length of Pield in Logical Record 
Length - Three bytes in EBCDIC notation 
Contents - Length specification same as (11). 

(27) 	 Character Set Spec.ificat io.n 
Length - One byte EBCDIC 
Contents - A - alphameric field (EBCDIC) 

. D - decimal field (EDCDIC). 

Note: Fields 24-25-26-27 may appear as multiple entries 
specifying from left to right the fields making up the 
group for vhich the current record is identifying. All 
system generated fields viII use entries (1) through 
(10) with·the exception of .RCN and +SC(B) which ~ill 
list all user-defined fields making up the control group 
with entries (20), (21), and (24) through (27). 

A.J.LJ Continuation Record Techniques 

There are occasions when the data contents df the 

control record and group format records may exceed the 1,000 

byte logical record size allowed in the 05/360 data set. 

This section describes the manner in which the File 

Structuring Component will handle such cases. 


1.3.4.1 Continuation Records foe the FFT Control Record 

Because of the logical record length limitations, the 
Control Record viII only be able to supply i of orma tion on a 
maximum of 179 periodic sets. Since the system has been 
designed to handle, theoretically, up to 255 Periodic Sets 
for each named data set, it becomes necessary to provide a 
continuation record when the number of periodic sets defined 

91 




INTRODUCTION TO FILE CONCEPTS 


.by the user exceeds 179•. When such a case occurs, a second 
control record will be created to continue the information 
on periodic sets (entries 17-18-19). 

The primary (first) control reco·rd will specify the. 
total number of Periodic sets that it defines in. entry 11. 
The high-order byte of entry 13 vill contain the character 
"e" indicating that a continuation record follows. The 
secondary control record will have the same format as the 
primary. However, it will have the character "e" in its key 
immediately following the record type field (entry 3). The 
entries 5-10 and 12-16 will not be maintained# but their 
,length is the same as in the primary. Bntry 11 will contain 
the nu mber of periodic sets defined by the secondary record. 
entries 17, 18,. and 19 viII be used and repeated until all 
Periodic sets have been accounted for. 

A.3.4.2 continuation Records for Group Format Records 

Similar to the problem faced by the control record, the 
element format record for a group may experience overflov 
cases. This overflow of data results from the series of 
entries which lists each field (group) contained within the 
defined group. The following table illustrates the number 
of fields that a group format record may define using a 
single logical record. 

os Fields five bytes 

FFT . Record Key .from 8 to 255 bytes 

RECORD Fixed Entries 40 bytes 
ENTRY 
LENGTHS Field/group label .fro m 0 to 132 byte~ 

Edit Pattern from 0 to 132 bytes 

Field Length specs 
in group format record 16 bytes per field 

a. ~Q.!:2.i case assuming max key, label, and edit length will 
allow 27 fields (groups) to be defined as a single 
group within a 1.000 byte record. 

92 



1 
I 

b. Dg§! case assuming 
will allow 59 

min key, and no 
fields (groups). 

label or edit pattern, 

c. IY!!!f.sJ: case with key length of 15 
8 bytes, and edit length of 
fields (groups). 

bytes, 
8 byt

label length of 
es will allow.57 

When a continuation record is generated, entry 21 in the 
primary record will state only the numb~r of fields that it 
lists. The high-order byte of entry 7 will contain the 
character «e" to indicate that continuation record(s) 
follow. The continuation records will have the same format 
as the primary. However entries 8 through 20 will not 
contain valid data and entries 22 and 23 will not appear. 
The secondary record key will contain the group name, as 
usual, but will be suffixed by an eighth byte using binary 
notation to indicate the number of the continuation record. 
The first continuation record would contain "111 in binary 
and so forth. Entry 21 in the contihuation record will 
contain a number indicating how many fields are contained in 
the list of entries 24, 25, 26, and 27. 

93 
i 

i 



DISTRIBUTION 

CSM UM 
for

15B-68 

NMCSSC CODES COPIES 

BIOO----~--------------------------------------------BIll (COR for CSC)----------------------------------­ 201 

BIll (COR for 20IBM)---------------~-------------------
1Bl12--~----~----------------------------------------­B121 (Reference)------------------------------------­ 2 

B121 (Record,Copy)----------------------------------- 1 
1B200------------------------------------------------­

2B210------------------------------------------------­

B220------~------------------------------------------ 2 
2B230------------------------~------------------------­

B240---------------------------------------------~--­
1B300-------------------------------------------------
2 

B30'O '(T'raining) -------------..-----------------------­ 30 
3B311-------------------------------~------------~---­"B312------------------------------------------------- 2 
2,B313------------------------------------------------­

2B320----------------------~-~-----------------------­
1B400------------------------------~-----------------­BflO------------------------------------------------- 1 
1B411------------------------------------------------­

1"B420------------------------------------------------­B430 .Maintenance (In,house)---------~--~------------­ 10 

B430 Maintenance (Contractor)-----------------------­ 8 
B430 Development· (Contractor)------------------------ 3B430 (CINC/SER Support)------------------------------ 5 
B430 iStock)----------------------------------------- 75
B500 (Tech Ser Support)------------------------------ 2 

1B510-----------------~------------------------------­
2,B600------------------------------------------------­

DCA CODE 

900----------~--~~------------------~---------------- 1 
EXTERNAL 

Director for Operations, J-3, ATT: Director for 
Reconnaissancef Room 20-921, Pentagonf 
Washington, D.C. 20301---------------~--------------- 1 

Director, J-4, Office Joint Chiefs of Staff, 

Room 2E-828, ·Pentagon, Washington, D.C. 20301-------- 1 


OJCS, J-3 PNAD1 Room 2B870 
Pentagonf Washington, D.C.--------------------------- 1 

94 



• 


:EXTERNAL , COPIES , 
NMCS Division, J-3: Office of Joint Chiefs of Staff: 
Room 2C0869, Pentagon: Washington, D.C. 20301-------­ 2 

Director of Administrative Services, OJCS-DAS: 

ATT: Personnel Division: Room'2A-944, Pentagon;

Washington, D.C. 20301------------------_____________ 1 


Defense Documentation Center: Cameron Station; 

Alexandria, Virginia 22314---------------------______ 12 


Director, Defense Intelligence Agency: ATT: DS-5C2 

Washington, D.C. 20301---------------------__________ 150 


Commander in Chief, United States European Command: 

ATT: ECJC-DP: APO New York 09128--------------------- 10 


Commander in Chief, Pacific:ATT: J02C: Box 32A 
FPO San Francisco 96610----~------------------_______ ~O 

Automatic Data Processing Division Supreme Head­
quarters Allied Powers, Europe; ATT: SA & P Branch;
APO New York _____ 2509055--~-~---~---------- ~__________ 

u.S. Military Assistance Command, Vietnam; 

ATT: Chief, Data Management Agency; 

APO San Francisco 96222------------------------______ 20
I 
Commander in Chief, Continental Air Defense Conunand; 

ATT: CICA-P: Ent AFB, Colorado 80912------'----------- 3 


Commander in Chief; United States Army, Europe and 

Seventh Army; ATT: ODCS, OPS; APO New York 09403----- 2 


Hq. U.S. Marine Corps ATT: System Design/Programming 

Branch Code AP-11; Washington, D.C. 20380------------ 5 


AFXOXSC, System Programming Section: USAF Command Post; 

Room BF-915A, Pentagon; Washington, D.C. 20330------- 10 


USAF Tactical Air Command'; ATT: IND; Langley AFB, 

Virginia 23365------------------------------_________ 3 

Department of the Air Force; Task Force Alpha (PACAF); 

ATT: TOSN; APO San Francisco 96310------------------- 1 


Hq Pacific Air Forces; ATT: DOYP; 

APO San Francisco 96553------------------------------ 1 


95 



~RNAL COP'IES 

COSMIC: Barrow Hall, University of Georgia:
Athens, Georgia 30601------~------------------------- 1 

Hq, USCONARC: ATT: ATOPS-CC: 
Fort Monroe, Virginia 23351-------------------------- 1 

96 




UNCLASSIFIED , 
 Security Classification 


~ ~OCUMENT CONTROL DATA· R 5. D 
(Security c/a••lllcatlon 01 title, body 01 abat,acl and Indellln' annotiltlon mu.t be entered when the o".rall report I. ct•••If/ed, 

I. ORIGINATING ACTIVITY (Corpor.te.uthor) U. REPORT SECURITY CLAIIII"'CAT'ON 

NMCSSC/Internati ona 1 Business Machines Corporation UNCLASSIFIED 
abo GROUP 

NONE 
3. REPOAT TITLE 

National Military Command System Information Processing System (NIPS), System 360 
Fomatted File System, Volume I, Introduction to File Concepts 

e. OESCAIPTIVE NOTES (Typ. 01 report _d Inclu./ve d.t••) 

II. AU T ~ORISI (Fir., _m., ""ddte 'nlt,." I••' tI4t",e) 

Vari OUS 

e. REPO~T DATE 74. TOTAL NO. OF PAGIES rb • NO. 0 

O
RIE". 

1 July 1971 103 
... CONTRACT OR GRANT NO. 1Ie.-ORIGINATOR'S REPORT NUIoI"IIIERIII, 

'DCA 100-70-C-0031 CSM UM 15B-68, Vol I, Introduction to 
b. PROJECT NO. File Concepts 

c. 8b. OTHER REPORT NOIII' (An,. other nllDllle,. "'., me, ". •••'''" 
thl. report) 

d. 

to. OIST~IBUTION STATEMENT 

Th is document has been approved for public release and sale; its distribution is 
un1imited o 

It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

Nati ona 1 ~lil itary Command System Support
Center, Room BE-685, The Pentagon
Washington, D.C. 20301 

13. ABSTRACT 

This volume presents System Concepts and System Use; it shows a sample NIPS 360 FFS 
Data File, the Glossary of Terms, and a description of the NIPS 360 FFS Data File 
and File Format Table. 

The NIPS 360 is the total system composed of the S/360 hardware and S/360 Operating
System (OS) used to support NIPS 360 FFS software. 

This document supersedes CSM UM 15A-68, Vol ume 1. 

Other volumes in this series are: 

CSM UM 158-65 Vol II - Fi 1 e Structuring (FS)
Vol III - File Maintenance (FM)
Vol IV - Retrieval and Sort Processor (RASP)
Vol V - Output Processor (OP)
Vol VI - Terminal Processing (TP)
Vol VII - Utility Support (UT)
Vol VIII - Job Preparation Manual 
Vol IX - Error Codes 

TR 54A-70 - Installation of NIPS 360 FFS 
CSM GO l5A-68 - General Description 

R.~I.AC •• DO ..OftM 147•• I .IAN .4. WHICH ,. 
O.SOI.ET. "0111 "IIIMY U •••DD ,':0':'•• 1473 UNCLASS I FI ED­

, 97 security ci...,hc.uon 
I I 

http:O.SOI.ET


I •. LINK A LINK B LINK C 

ROLE WT ROLE WT ROLE WT 

., 

UNCLASSIFIED 
9 8 A.\l "curi~ aa••mcatlOll 

• u.s. GOVERNMENT PRINTING OFFICE: 1971-441-524/280 


	205_1ad-0002
	205_1ad-0003
	205_1ad-0004
	205_1ad-0005
	205_1ad-0006
	205_1ad-0007
	205_1ad-0008
	205_1ad-0009
	205_1ad-0010
	205_1ad-0011
	205_1ad-0012
	205_1ad-0013
	205_1ad-0014
	205_1ad-0015
	205_1ad-0016
	205_1ad-0017
	205_1ad-0018
	205_1ad-0019
	205_1ad-0020
	205_1ad-0021
	205_1ad-0022
	205_1ad-0023
	205_1ad-0024
	205_1ad-0025
	205_1ad-0026
	205_1ad-0027
	205_1ad-0028
	205_1ad-0029
	205_1ad-0030
	205_1ad-0031
	205_1ad-0032
	205_1ad-0033
	205_1ad-0034
	205_1ad-0035
	205_1ad-0036
	205_1ad-0037
	205_1ad-0038
	205_1ad-0039
	205_1ad-0040
	205_1ad-0041
	205_1ad-0042
	205_1ad-0043
	205_1ad-0044
	205_1ad-0045
	205_1ad-0046
	205_1ad-0047
	205_1ad-0048
	205_1ad-0049
	205_1ad-0050
	205_1ad-0051
	205_1ad-0052
	205_1ad-0053
	205_1ad-0054
	205_1ad-0055
	205_1ad-0056
	205_1ad-0057
	205_1ad-0058
	205_1ad-0059
	205_1ad-0060
	205_1ad-0061
	205_1ad-0062
	205_1ad-0063
	205_1ad-0064
	205_1ad-0065
	205_1ad-0066
	205_1ad-0067
	205_1ad-0068
	205_1ad-0069
	205_1ad-0070
	205_1ad-0071
	205_1ad-0072
	205_1ad-0073
	205_1ad-0074
	205_1ad-0075
	205_1ad-0076
	205_1ad-0077
	205_1ad-0078
	205_1ad-0079
	205_1ad-0080
	205_1ad-0081
	205_1ad-0082
	205_1ad-0083
	205_1ad-0084
	205_1ad-0085
	205_1ad-0086
	205_1ad-0087
	205_1ad-0088
	205_1ad-0089
	205_1ad-0090
	205_1ad-0091
	205_1ad-0092
	205_1ad-0093
	205_1ad-0094
	205_1ad-0095
	205_1ad-0096
	205_1ad-0097
	205_1ad-0098
	205_1ad-0099
	205_1ad-0100
	205_1ad-0101
	205_1ad-0102
	205_1ad-0103
	205_1ad-0104
	205_1ad-0105
	205_1ad-0106
	205_1ad-0107
	205_1ad-0108

