Salvage of Water Damaged Library Materials - part 2


Paper absorbs water at different rates depending on the age, condition, and composition of the material. Thus, some understanding of the mechanism of swelling action, as well as the development of mold, is essential to planning a successful salvage operation. In addition, when large collections are at stake, it is useful to be able to calculate in advance the approximate amount of water which will have to be extracted in a drying process. This will provide helpful data when selecting an appropriate drying method. Of equal importance is some knowledge of the length of time each type of material can be submerged in water before serious deterioration occurs.


Generally speaking, manuscripts and books dated earlier than 1840 will absorb water to an average of 80 percent of their original weight. Some may absorb as much as 200% of their original weight. Since there is a greater concentration of proteinaceous material and receptivity to water in such early books and papers, they are especially vulnerable to mold when damp. Modern books, other than those with the most brittle paper, will absorb an average of up to 60 percent of their original weight. Thus, in estimating the original weight of a collection, if one assumes an average of four pounds per book when dry for 20,000 books in each category, drying techniques must be capable of removing approximately 64,000 pounds of water from the earlier materials and 48,000 pounds from the latter.

The major part of all damage to bound volumes caused by swelling from the effects of water will take place within the first four hours or so after they have been immersed. Since the paper in the text block and the cardboard cores of book bindings have a greater capacity for swelling than the covering materials used for the bindings, the text-block of a soaked book usually expands so much that the spine assumes a concave shape and the fore-edge a convex shape, thus forcing the text block to become partially or completely detached from its binding. The board cores of bindings absorb a great amount of water in such circumstances and are usually the source of mold development between the board papers and fly leaves. This is especially apparent when the area in which water damage has occurred begins to dry out and the relative humidity falls below 70%. Although it is obviously important to remove as much moisture as possible from the environment, it is essential that the water content of the material be monitored because this will remain dangerously high, long after the area is apparently safe. Action taken to salvage the material should therefore be governed by the water content of the material and not by the relative humidity of the area. A water moisture meter, such as an Aqua Boy can be used to measure the water content inside books and box files. If such an instrument is unavailable a crude but quite effective way is to use a mirror within but not touching the text block. Condensation will cloud the mirror. A water content measuring less that 7% is considered dry.

Leather and vellum books, especially those of the 15th, 16th, and 17th centuries, can usually be restored successfully if they are dried under very carefully controlled procedures. Such materials are usually classified as rare and should be treated accordingly by not mixing them with less rare materials during preparations for salvage, stabilization and drying. The advice of a certified book conservator may be essential in order to safely carry out the most appropriate methods. If the material is frozen, freezer paper should be used between each volume to prevent sticking. (Refer to the section on freeze-drying for the special requirements needed for drying this type of material).

Unfortunately, modern manufacturing processes so degrade the natural structure of leather that, once water soaked, book covers are often impossible to restore. Some leather bindings will be reduced to a brown sludge, while others will severely shrink. Swelling of covering materials, such as cloth, buckram, and certain plastics is negligible, in some cases shrinkage occurs. Book covers, however, which are made of a highly absorbent cardboard, will absorb water to a greater degree than an equivalent thickness of text block. Some book covering materials which have already deteriorated will absorb water at about the same rate as the text block.

Once access to the collection is gained, the external appearance of each volume and group of volumes is a useful indication of the degree of water damage. Those volumes found, usually in heaps, in the aisles will naturally be the most damaged. Not only will they have sustained the shock of falling, as rapid swelling caused them to burst from the shelves, but they will also have been exposed to water for a longer period than the volumes on the shelves above them. These will need special, flat packing and the most extensive restoration. The appearance of such volumes can be a devastating, emotional experience, but one must not panic since every volume worth the cost of salvage and restoration can be saved.

Above the floor levels there will be distinct signs among the shelves of the locations of the wettest material. Shelves which have expanded under the pressure of swollen paper and bindings will usually contain a mixture of evenly wet as well as unevenly wet material. The proportion of evenly wet material in these situations is usually less than those that are unevenly wet. This is because books, originally shelved closely packed together, will not easily be completely saturated especially if the paper is slow to absorb. This is the major reason why so many books become misshapen and distorted after water damage and also after they have been frozen and dried. If paper is unevenly wet, it will not dry without distortion. Misshapen volumes with concave spines and convex fore-edges can be immediately identified as belonging to the category of very wet. Others that have severely swollen text blocks but that still retain some spine and fore-edge shape may indicate that they were previously bound with library binding oversewing techniques and may have sustained irreversible sewing structure damage. Others may be relatively sound in shape and these stand the best chance of drying with the minimum of distortion.

Disaster Preparedness Table of Contents